MATLAB程序代码.pdf

  1. 1、本文档共9页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
MATLAB程序代码

MATLAB 程序代码--BP 神经网络的设计实例 例 1 采用动量梯度下降算法训练 BP 网络。 训练样本定义如下: 输入矢量为 p =[-1 -2 3 1 -1 1 5 -3] 目标矢量为 t = [-1 -1 1 1] 解:本例的 MATLAB 程序如下: close all clear echo on clc % NEWFF——生成一个新的前向神经网络 % TRAIN——对 BP 神经网络进行训练 % SIM——对 BP 神经网络进行仿真 pause % 敲任意键开始 clc % 定义训练样本 % P 为输入矢量 P=[-1, -2, 3, 1; -1, 1, 5, -3]; % T 为目标矢量 T=[-1, -1, 1, 1]; pause; clc % 创建一个新的前向神经网络 net=newff(minmax(P),[3,1],{tansig,purelin},traingdm) % 当前输入层权值和阈值 inputWeights=net.IW{1,1} inputbias=net.b{1} % 当前网络层权值和阈值 layerWeights=net.LW{2,1} layerbias=net.b{2} pause clc % 设置训练参数 net.trainParam.show = 50; net.trainParam.lr = 0.05; net.trainParam.mc = 0.9; bpnet=newff(pr,[12 4],{logsig, logsig}, traingdx, learngdm); %建立 BP 神经网络, 12 个隐层神经元,4 个输出神经元 %tranferFcn 属性 logsig 隐层采用 Sigmoid 传输函数 %tranferFcn 属性 logsig 输出层采用 Sigmoid 传输函数 %trainFcn 属性 traingdx 自适应调整学习速率附加动量因子梯度下 降反向传播算法训练函数 %learn 属性 learngdm 附加动量因子的梯度下降学习函数 net.trainParam.epochs=1000;%允许最大训练步数 2000 步 net.trainParam.goal=0.001; %训练目标最小误差 0.001 net.trainParam.show=10; %每间隔 100 步显示一次训练结果 net.trainParam.lr=0.05; %学习速率 0.05 net.trainParam.epochs = 1000; net.trainParam.goal = 1e-3; pause clc % 调用 TRAINGDM 算法训练 BP 网络 [net,tr]=train(net,P,T); pause clc % 对 BP 网络进行仿真 A = sim(net,P) % 计算仿真误差 E = T - A MSE=mse(E) pause clc echo off 例 2 采用贝叶斯正则化算法提高 BP 网络的推广能力。在本例中,我们采用两种训练方法, 即 L-M 优化算法(trainlm)和贝叶斯正则化算法(trainbr),用以训练 BP 网络,使其能 够拟合某一附加有白噪声的正弦样本数据。其中,样本数据可以采用如下 MATLAB 语句生 成: 输入矢量:P = [-1:0.05:1]; 目标矢量:randn(’seed’; T = sin(2*pi*P)+0.1*randn(size(P)); 解:本例的 MATLAB 程序如下: close all clear echo on clc % NEWFF——生成一个新的前向神经网络 % TRAIN——对 BP 神经网络进行训练 % SIM——对 BP 神经网络进行仿真 pause % 敲任意键开始 clc % 定义训练样本矢量 % P 为输入矢量 P = [-1:0.05:1]; % T 为目标矢量 randn(seed; T =

文档评论(0)

hhuiws1482 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:5024214302000003

1亿VIP精品文档

相关文档