ARMA模型建模与预测指导.doc-时间序列分析.doc

ARMA模型建模与预测指导.doc-时间序列分析.doc

  1. 1、本文档共11页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
ARMA模型建模与预测指导.doc-时间序列分析.doc

案例二 ARMA模型建模与预测指导 一、实验目的 学会通过各种手段检验序列的平稳性;学会根据自相关系数和偏自相关系数来初步判断ARMA模型的阶数p和q,学会利用最小二乘法等方法对ARMA模型进行估计,学会利用信息准则对估计的ARMA模型进行诊断,以及掌握利用ARMA模型进行预测。掌握在实证研究中如何运用Eviews软件进行ARMA模型的识别、诊断、估计和预测和相关具体操作。 二、基本概念 宽平稳:序列的统计性质不随时间发生改变,只与时间间隔有关。 AR模型:AR模型也称为自回归模型。它的预测方式是通过过去的观测值和现在的干扰值的线性组合预测, 自回归模型的数学公式为: 式中: 为自回归模型的阶数(i=1,2, ,p)为模型的待定系数,为误差, 为一个平稳时间序列。 MA模型:MA模型也称为滑动平均模型。它的预测方式是通过 过去的干扰值和现在的干扰值的线性组合预测。滑动平均模型的数学公式为: 式中: 为模型的阶数; (j=1,2,,q)为模型的待定系数;为误差; 为平稳时间序列。 ARMA模型:自回归模型和滑动平均模型的组合, 便构成了用于描述平稳随机过程的自回归滑动平均模型ARMA, 数学公式为: 三、实验内容及要求 1、实验内容: (1)根据时序图判断序列的平稳性; (2)观察相关图,初步确定移动平均阶数q和自回归阶数p; (3)运用经典B-J方法对某企业201个连续生产数据建立合适的ARMA()模型,并能够利用此模型进行短期预测。 2、实验要求: (1)深刻理解平稳性的要求以及ARMA模型的建模思想; (2)如何通过观察自相关,偏自相关系数及其图形,利用最小二乘法,以及信息准则建立合适的ARMA模型;如何利用ARMA模型进行预测; (3)熟练掌握相关Eviews操作,读懂模型参数估计结果。 四、实验指导 1、模型识别 (1)数据录入 打开Eviews软件,选择“File”菜单中的“New--Workfile”选项,在“Workfile structure type”栏选择“Unstructured /Undated”,在“Date range”栏中输入数据个数201,点击ok,见图2-1,这样就建立了一个工作文件。 图2-1 建立工作文件窗口 点击File/Import,找到相应的Excel数据集,打开数据集,出现图2-2的窗口,在“Data order”选项中选择“By observation”即按照观察值顺序录入,第一个数据是从a2开始的,所以在“Upper-left data cell”中输入a2,本例只有一列数据,在“Names for series or number if named in file”中输入序列的名字production或1,点击ok,则录入了数据。 图2-2 (2)绘制序列时序图 双击序列production,点击view/Graph/line,则出现图2-3的序列时序图,时序图看出201个连续生产的数据是平稳的,这个判断比较粗糙,需要用统计方法进一步验证。 图2-3 (3)绘制序列相关图 双击序列production,点击view/Correlogram,出现图2-4,我们对原始数据序列做相关图,因此在“Correlogram of”对话框中选择“Level”即表示对原始序列做相关,在滞后阶数中选择14(),点击ok,即出现相关图2-5。 图2-4 从相关图看出,自相关系数迅速衰减为0,说明序列平稳,但最后一列白噪声检验的Q统计量和相应的伴随概率表明序列存在相关性,因此序列为平稳非白噪声序列。我们可以对序列采用B-J方法建模研究。 图2-5 (4)ADF检验序列的平稳性 通过时序图和相关图判断序列是平稳的,我们通过统计检验来进一步证实这个结论,双击序列production,点击view/unit root test,出现图2-6的对话框,我们对序列本身进行检验,序列不存在明显的趋势,所以选择对常数项,不带趋势的模型进行检验,其他采用默认设置,点击ok,出现图2-7的检验结果,表明拒绝存在一个单位根的原假设,序列平稳。 图2-6 图2-7 (5)模型定阶 由图2-5看出,偏自相关系数在k=3后很快趋于0即3阶截尾,尝试拟合AR(3);自相关系数在k=1处显著不为0,当k=2时在2倍标准差的置信带边缘,可以考虑拟合MA(1)或MA(2);同时可以考虑ARMA(3,1)模型等。 在序列工作文件窗口点击View/Descriptive Statistics/Histogram and States对原序列做描述统计分析见图2-8,可见序列均值非0,我们通常对0均值平稳序列做建模分析,所以需要在原序列基础上生成一个新的0均值序

文档评论(0)

170****0532 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:8015033021000003

1亿VIP精品文档

相关文档