- 1、本文档共9页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
GeneExpressionComputingForMicroarrayImage基因表达微阵列图像计算
Microarray Image Pre-Analysis for Critical Gene Expression Computation with Implemented Algorithmic Kernel
中華民國94年12月 Hwa Kang Journal of Agriculture
華岡農科學報第十六期:43-50 Vol. 16:43 -50, December 2005
PAGE 50
PAGE 51
中華民國94年12月 Hwa Kang Journal of Agriculture
華岡農科學報第十六期:43-50 Vol. 16:43-50, December 2005
PAGE 43
Microarray Image Pre-Analysis for Critical Gene Expression Computation with Implemented Algorithmic Kernel
Ming-Yueh Tsai1, Chun-Fan Chang2, Hsueh-Ting Chu3, Chen-hsiung Chan4,
King-Jen Chang5, Cheng-Yao Kao6, and Chaur-Chin Chen7
Abstract: Microarray hybridization analysis on transcriptomic specimens has become an efficient technology platform towards identifying valid biomarkers of phenotypic traits or diseases by interrogating simultaneously almost genome-wide genes simply with corresponding probes microarrayed on matrix of glass slide or nylon membrane. Still, the computational processing on microarray image is profoundly essential for mining transcriptomic biomarkers by means of acquiring truthful intensity data of respective spot objects in order for accurate gene expression analysis through critical preprocessing procedures including displayable TIFF image data input, applicable RGB-CMYK 24/16-bit greyscaling, global object layout gridding, intensity 16/8-bit converting, and so forth. This paper implemented an in-house algorithmic kernel of Otsu’s Simple Thresholding, Gaussian Mixture Model (GMM), and Iterated Conditional Modes (ICM) for reliable gridding and segmentation pre-analysis which computes gene expression pattern on microarray image data for subsequent automatic image data analysis (Aida). In comparison with commercial microarray software, our Aida algorithmic kernel demonstrated higher average Pearson correlation coefficient of 0.9933 (cy3, ICM/Otsu’s) and 0.9721 (cy3, ICM/GMM) despite of the inferior result of 0.9538 (cy3, ICM/ArrayPro) with commercial software. Additional procedures with implemented algorithmic Aida modules we
文档评论(0)