- 1、本文档共16页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Chapter 12 ;Properties of OLS with serially correlated errors
OLS still unbiased and consistent if errors are serially correlated
Correctness of R-squared also does not depend on serial correlation
OLS standard errors and tests will be invalid if there is serial correlation
OLS will not be efficient anymore if there is serial correlation
Serial correlation and the presence of lagged dependent variables
Is OLS inconsistent if there are ser. corr. and lagged dep. variables?
No: Including enough lags so that TS.3‘ holds guarantees consistency
Including too few lags will cause an omitted variable problem and serial correlation because some lagged dep. var. end up in the error term;Testing for serial correlation
Testing for AR(1) serial correlation with strictly exog. regressors
Example: Static Phillips curve (see above);Durbin-Watson test under classical assumptions
Under assumptions TS.1 – TS.6, the Durbin-Watson test is an exact test (whereas the previous t-test is only valid asymptotically).
Example: Static Phillips curve (see above);Testing for AR(1) serial correlation with general regressors
The t-test for autocorrelation can be easily generalized to allow for the possibility that the explanatory variables are not strictly exogenous:
The test may be carried out in a heteroscedasticity robust way
General Breusch-Godfrey test for AR(q) serial correlation
;Correcting for serial correlation with strictly exog. regressors
Under the assumption of AR(1) errors, one can transform the model so that it satisfies all GM-assumptions. For this model, OLS is BLUE.
Problem: The AR(1)-coefficient is not known and has to be estimated;Correcting for serial correlation (cont.)
Replacing the unknown by leads to a FGLS-estimator
There are two variants:
Cochrane-Orcutt estimation omits the first observation
Prais-Winsten estimation adds a transformed first observation
In smaller samples, Prais-Winsten estimation should be more efficient
Comparing OLS and FGLS with autocorrela
文档评论(0)