图像特征提取-剖析.ppt

  1. 1、本文档共50页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
图像特征提取-剖析

第6讲 图像特征提取与分析 ;6.1 基本概念 6.2 颜色特征描述 6.3 形状特征描述 6.4 图像的纹理分析技术 6.5 小结;6.1 基本概念 ;特征提取 原始特征的数量很大,或者说原始样本处于一个高维空间中,通过映射或变换的方法可以将高维空间中的特征描述用低维空间的特征来描述,这个过程就叫特征提取 。 特征选择 从一组特征中挑选出一些最有效的特征以达到降低特征空间维数的目的,这个过程就叫特征选择。 选取的特征应具有如下特点: 可区别性 可靠性 独立性好 数量少;6.2 颜色特征描述 ;6.2.1 颜色矩 ;6.2.2 颜色直方图 ;由于RGB颜色空间与人的视觉不一致,可将RGB空间转换到视觉一致性空间。除了转换到前面提及的HSI空间外,还可以采用一种更简单的颜色空间: 这里,max=255。 彩色图像变换成灰度图像的公式为: 其中R,G,B为彩色图像的三个分量,g为转换后的???度值。;6.3 形状特征描述 ;6.3.1几个基本概念;邻域与邻接 互为4-邻域的两像素叫4-邻接。 互为8-邻域的两像素叫8-邻接。 ; 对于图像中具有相同值的两个像素A和B,如果所有和A、B具有相同值的像素序列 存在,并且 和 互为4-邻接或8-邻接,那么像素和叫做4-连接或8-连接,以上的像素序列叫4-路径或8-路径。; 在图像中,把互相连接的像素的集合汇集为一组,于是具有若干个0值的像素和具有若干个l值的像素的组就产生了。把这些组叫做连接成分,也称作连通成分。 在研究一个图像连接成分的场合,若1像素的连接成分用4-连接或8-连接,而0像素连接成分不用相反的8-连接或4-连接就会产生矛盾。 假设各个1像素用8-连接,则其中的0像素就被包围起来。如果对0像素也用8-连接,这就会与左下的0像素连接起来,从而产生矛盾。因此0像素和1像素应采用互反的连接形式,即如果1像素采用8-连接,则0像素必须采用4-连接。 ;在0-像素的连接成分中,如果存在和图像外围的1行或1列的0-像素不相连接的成分,则称之为孔。不包含有孔的1像素连接成分叫做单连接成分。含有孔的l像素连接成分叫做多重连接成分。 ;区域内部空间域分析是不经过变换而直接在图像的空间域,对区域内提取形状特征。 1.欧拉数 图像的欧拉数是图像的拓扑特性之一,它表明了图像的连通性。下图 (a)的图形有一个连接成分和一个孔,所以它的欧拉数为0,而下图 (b)有一个连接成分和两个孔,所以它的欧拉数为-1。 可见通过欧拉数可用于目标识别。;2.凹凸性 凹凸性是区域的基本特征之一,区域凹凸性可通过以下方法进行判别:区域内任意两像素间的连线穿过区域外的像素,则此区域为凹形。相反,连接图形内任意两个像素的线段,如果不通过这个图形以外的像素,则这个图形称为是凸的。任何一个图形,把包含它的最小的凸图形叫这个图形的凸闭包。 凸图形的凸闭包就是它本身。从凸闭包除去原始图形的部分后,所产生的图形的位置和形状将成为形状特征分析的重要线索。凹形面积可将凸封闭包减去凹形得到。 ;3.距离 距离在实际图像处理过程中往往是作为一个特征量出现,因此对其精度的要求并不是很高。所以对于给定图像中三点A,B,C,当函数D(A,B)满足下式的条件时,把D(A,B)叫做A和B的距离,也称为距离函数。 第一个式子表示距离具有非负性,并且当A和B重合时,等号成立; 第二个式子表示距离具有对称性 第三个式子表示距离的三角不等式。;(1) 欧氏距离: (2) 4-邻域距离,也称为街区距离: (3)8-邻域距离,也称为棋盘距离: ;街区距离和棋盘距离都是欧式距离的一种近似。 ;下图中表示了以中心像素为原点的各像素的距离。从离开一个像素的等距离线可以看出,在欧氏距离中大致呈圆形,在棋盘距离中呈方形,在街区距离中呈倾斜45度的正方形。街区距离是图像中两点间最短的4-连通的长度,而棋盘距离则是两点间最短的8-连通的长度。 ;4.区域的测量 区域的大小及形状表示方法主要包括以下几种: (1)面积S:图像中的区域面积S可以用同一标记的区域内像素的个数总和来表示。 按上述表示法区域R的面积S=41。区域面积可以通过扫描图像,累加同一标记像素得到,或者是直接在加标记处理时计数得到。;(2)周长L:区域周长L是用区域中相邻边缘点间距离之和来表示。采用不同的距离公式,关于周长L的计算有很多方法。常用的有两种: 一种计算方法是采用欧式距离,在区域的边界像素中,设某像素与其水平或垂直方向上相邻边缘像素间的距离为1,与倾斜方向上相邻边缘像素间的距离为

文档评论(0)

wuyoujun92 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档