- 1、本文档共6页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
SteelDefectClassicationwith.PDF
Steel Defect Classi?cation with
Max-Pooling Convolutional Neural Networks
Jonathan Masci, Ueli Meier, Dan Ciresan, Gabriel Fricout
Jurgen¨ Schmidhuber Arcelor Mittal
IDSIA, USI and SUPSI Maizieres` Research SA,
Galleria 2, 6928 Manno-Lugano, France
Switzerland {gabriel.fricout@}
{jonathan, ueli, dan, juergen}@idsia.ch
Abstract—We present a Max-Pooling Convolutional Neural si?cation. The system is usually based on a set of hand-
Network approach for supervised steel defect classi?cation. On a wired pipelines with partial or no self-adjustable parameters
classi?cation task with 7 defects, collected from a real production which makes the ?ne-tuning process of this industrial systems
line, an error rate of 7% is obtained. Compared to SVM
classi?ers trained on commonly used feature descriptors our best cumbersome, requiring much more human intervention than
net performs at least two times better. Not only we do obtain desired. In this work we focus on the two last pipeline stages
much better results, but the proposed method also works directly and propose an approach based on Max-Pooling Convolutional
on raw pixel intensities of detected and segmented steel defects, Neural Networks (MPCNN) [1], [2], [3], [4], [5], that learn
avoiding further time consuming and hard to optimize ad-hoc the features directly from labeled images using supervised
preprocessing.
learning. We show that the proposed method achieves state-
of-the-art results on real world data and compare our approach
I. INTRODUCTION
to classi?ers trained on clas
文档评论(0)