- 1、本文档共9页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
EM是我1直想深入学习的算法之1
EM是我一直想深入学习的算法之一,第一次听说是在NLP课中的HMM那一节,为了解决HMM的参数估计问题,使用了EM算法。在之后的MT中的词对齐中也用到了。在Mitchell的书中也提到EM可以用于贝叶斯网络中。
下面主要介绍EM的整个推导过程。
1. Jensen不等式
????? 回顾优化理论中的一些概念。设f是定义域为实数的函数,如果对于所有的实数x,,那么f是凸函数。当x是向量时,如果其hessian矩阵H是半正定的(),那么f是凸函数。如果或者,那么称f是严格凸函数。
????? Jensen不等式表述如下:
????? 如果f是凸函数,X是随机变量,那么
?????
????? 特别地,如果f是严格凸函数,那么当且仅当,也就是说X是常量。
????? 这里我们将简写为。
????? 如果用图表示会很清晰:
?????
????? 图中,实线f是凸函数,X是随机变量,有0.5的概率是a,有0.5的概率是b。(就像掷硬币一样)。X的期望值就是a和b的中值了,图中可以看到成立。
????? 当f是(严格)凹函数当且仅当-f是(严格)凸函数。
????? Jensen不等式应用于凹函数时,不等号方向反向,也就是。
2. EM算法
????? 给定的训练样本是,样例间独立,我们想找到每个样例隐含的类别z,能使得p(x,z)最大。p(x,z)的最大似然估计如下:
?????
????? 第一步是对极大似然取对数,第二步是对每个样例的每个可能类别z求联合分布概率和。但是直接求一般比较困难,因为有隐藏变量z存在,但是一般确定了z后,求解就容易了。
????? EM是一种解决存在隐含变量优化问题的有效方法。竟然不能直接最大化,我们可以不断地建立的下界(E步),然后优化下界(M步)。这句话比较抽象,看下面的。
????? 对于每一个样例i,让表示该样例隐含变量z的某种分布,满足的条件是。(如果z是连续性的,那么是概率密度函数,需要将求和符号换做积分符号)。比如要将班上学生聚类,假设隐藏变量z是身高,那么就是连续的高斯分布。如果按照隐藏变量是男女,那么就是伯努利分布了。
可以由前面阐述的内容得到下面的公式:
?????
????? (1)到(2)比较直接,就是分子分母同乘以一个相等的函数。(2)到(3)利用了Jensen不等式,考虑到是凹函数(二阶导数小于0),而且
?????
????? 就是的期望(回想期望公式中的Lazy Statistician规则)
????? 设Y是随机变量X的函数(g是连续函数),那么
????? (1) X是离散型随机变量,它的分布律为,k=1,2,…。若绝对收敛,则有
?????
????? (2) X是连续型随机变量,它的概率密度为,若绝对收敛,则有
????? ????? 对应于上述问题,Y是,X是,是,g是到的映射。这样解释了式子(2)中的期望,再根据凹函数时的Jensen不等式:
?????
可以得到(3)。
????? 这个过程可以看作是对求了下界。对于的选择,有多种可能,那种更好的?假设已经给定,那么的值就决定于和了。我们可以通过调整这两个概率使下界不断上升,以逼近的真实值,那么什么时候算是调整好了呢?当不等式变成等式时,说明我们调整后的概率能够等价于了。按照这个思路,我们要找到等式成立的条件。根据Jensen不等式,要想让等式成立,需要让随机变量变成常数值,这里得到:
?????
????? c为常数,不依赖于。对此式子做进一步推导,我们知道,那么也就有,(多个等式分子分母相加不变,这个认为每个样例的两个概率比值都是c),那么有下式:
?????
????? 至此,我们推出了在固定其他参数后,的计算公式就是后验概率,解决了如何选择的问题。这一步就是E步,建立的下界。接下来的M步,就是在给定后,调整,去极大化的下界(在固定后,下界还可以调整的更大)。那么一般的EM算法的步骤如下:
循环重复直到收敛 {
????? (E步)对于每一个i,计算
?????????????????
????? (M步)计算
????????????????? ????? 那么究竟怎么确保EM收敛?假定和是EM第t次和t+1次迭代后的结果。如果我们证明了,也就是说极大似然估计单调增加,那么最终我们会到达最大似然估计的最大值。下面来证明,选定后,我们得到E步
?????
????? 这一步保证了在给定时,Jensen不等式中的等式成立,也就是
?????
????? 然后进行M步,固定,并将视作变量,对上面的求导后,得到,这样经过一些推导会有以下式子成立:
?????
????? 解释第(4)步,得到时,只是最大化,也就是的下界,而没有使等式成立,等式成立只有是在固定,并按E步得到
文档评论(0)