- 1、本文档共3页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
生物统计学学习心得
生物统计学学习心得
一、《生物统计学》这一门课。你学到什么?谈谈你学习这一门课的心得体会。
(一)、《生物统计学》这门课,首先,我不仅学到了很多生物统计方面的基础知识、基本概念和相关的应用,还学习了如何设计试验。
在第一章,我学了统计数据的收集与整理。首先学习的是总体与样本的概念,统计学研究的核心问题是如何通过样本推断总体,因此,总体与样本是生物统计学中的两个最基本概念。总体是我们研究的全部对象。构成总体的一个研究单位称为个体。样本是总体的一部分,样本内包含的个体数目称为样本含量。接着学习了数据类型及频数分布。生物统计学中经常遇到的数据有两种类型,一种是连续型数据,指与某种标准做比较所得到的数据,采用变量的方法进行分析。另一种是离散型数据,指由记录不同类别的个体的数目所得到的数据,采用属性的方法进行分析。最后学习了样本的几个特征数,平均数、标准差、方差。
在第二章,我学了概率和概率分布。概率是事件所固有的,且不随人的主观意识而改变。总体分布是建立在概率这一概念基础之上的,因此在研究总体分布之前首先应对概率的基本知识有所了解。试验的每一最基本的结果称为基本事件,指不能再分的事件。复合事件指由若干个基本事件组合而成的事件。概率的基本运算法则包括概率加法法则、条件概率、概率乘法法则、独立事件。概率分布包括离散型概率分布和连续型概率分布。
在第三章,我学了几种常见的概率分布律。首先学了二项分布,二项分布的基本情况是:设有一随机试验,每次试验都有两种不同的结果,如成功的(事件A)和失败的(事件A’);生男孩(事件A)和生女孩(事件A’)。显然这两种可能的结果是互不相容的,独立地将此试验重复做n次,求在n次试验中,一种结果出现y次的概率。接着学了泊松分布、超几何分布、负二项分布、正态分布、指数分布等。
在第四章,我学了抽样分布。首先学了从一个正态总体中抽取的样本统计量的分布,学了一些基本概念,如标准误差、样本标准误差、自由度、查表。然后学了从两个正态总体中抽取的样本统计量的分布,包括标准差已知时两个平均数的和与差的分布、标准未知但相等时两个平均数的和与差的分布、两个样本方差比的分布----F分布。
在第五章,我学了统计推断。对总体做统计推断可以通过两条途径进行,一是首先对所估计的总体提出一个假设,称为统计假设检验,二是通过样本统计量估计总体参数,称为总体参数估计。首先学习单个样本的统计假设检验,检验的基本步骤:1.提出假设。2.构造并计算检验统计量:利用原假设所提供的信息,而且抽样分布已知。3.确定否定域(临界值):根据小概率事件原理,比较检验统计量和临界值的关系,确定其落在否定域还是接受域。主要学了t检验,u检验、x2检验。接着学了两个样本的差异显著性检验,包括两个方差的检验----F检验,标准差已知时两个平均数间差异显著性的检验,标准差未知但相等时,两平均数之间差异显著性的检验,标准差未知且可能不等时两平均数之间差异显著性的检验,配对数据的显著性检验-----配对数据的t检验,二项分布数据的显著性检验。
在第六章,我学了参数估计,即由样本统计量估计总体参数。估计量是估计总体参数的统计量,一个好的估计量应该满足三个条件:无偏性、有效性、相容性。对总体参数的估计,可分为点估计和区间估计。区间估计是指在一定概率保证下指出总体参数的可能范围,所给出的可能范围叫置信区间,本章我学习了μ的置信区间、σ的置信区间、平均数差的置信区间、配对数据的置信区间、标准差比的置信区间二项分布总体的置信区间。
在第七章,我学了拟合优度检验,拟合优度检验是用来检验实际观测数与依照某种假设或模型计算出来的理论数之间的一致性,以便判断该假设或模型是否与观测数相配合。做拟合优度检验一般需一下各步:1.对数据进行分组。2.计算理论数Ti。3分别合并两个尾区的理论数。4.零假设。5.计算出x2与x2临界值(查附表6)做比较。
在第八章,我学了单因素方差分析,方差分析可以同时判断多组数据平均数之间的差异显著性。总平方和,处理平方和,误差平方和,误差均方。方差分析应具备三个条件:可加性、正态性、方差齐性。若对一个固定效应模型经过方差分析之后,结论是拒绝Ho,即处理之间存在差异。为了弄清究竟在哪对之间存在显著差异,哪对之间无显著差异,必须在各处理平均数之间一对一对地做比较,统计上把多个平均数两两间的相互比较称为多重比较。本章学了最小显著差数检验和Duncan检验。最小显著差数检验的步骤:1.列出平均数的多重比较表,平均数从大到小自上而下排列。2.计算最小显著差数和LSD0.05和LSD0.01. 3.将平均数多重比较表中两两平均数的差数的绝对值与LSD0.05和LSD0.01比较,作出统计推断。
在第九章,我学了两因素及多因素方差分析。对于两因素交叉分组设计的实验应采用两因素方
文档评论(0)