- 1、本文档共10页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
一种病理图像的自动标注的机器学习方法
计算机研究与发展
DOI:10.7544?issn1000-1239 .2015 Journal of Computer Research and Development 52(9):2135-2144,2015
一种病理图像自动标注的机器学习方法
张 钢 钟 灵 黄永慧
广东工业大学自动化学院 广州
( 510006)
(ipx@gdut.edu.cn)
A Machine Learning Method for Histopathological Image Automatic Annotation
Zhang Gang,Zhong Ling,and Huang Yonghui
(School of Automation,Guangdong University of Technology,Guangzhou510006)
Abstract Histopathological image can reveal the reason and severity of diseases,which is important
for clinical diagnosis.Automatic analysis of histopathological image may release doctors burden for
manual annotation which can preserve more time for doctors to focus on special and difficult cases.
However,the ambiguous relationship between local regions in a histopathological image and
histopathological characteristics makes it difficult to construct a computer-aid model.An automatic
annotation method for histopathological images based on multiple-instance multiple-label (MIML)
learning is proposed,aiming at directly modeling the medical experience of doctors,which suggests
that each annotated term associated with an image corresponds to a local visually recognized region.
We propose a self-adaptive region cutting method with constraints,to segment each image into several
visually disjoint regions,and then perform a feature extraction for each generated region based on
texture and inner structures.The whole image is regarded as a bag and regions as instances,thus an
image is expressed as a multiple-instance sample.Then we propose a sparse ensemble multiple-
instance multiple-label learning algorithm,S-MIMLGP,based on Bayesian learning,and compare it
with current multiple-instance single label and multiple-instance multiple-label algorithms.The
evaluation on a clinical dataset from the derm
文档评论(0)