- 1、本文档共49页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
大数据相关术语及概念教程
PAGE \* MERGEFORMAT49
1
4A Account,Authorization,Authentication,Audit帐号、授权、认证、审计BOSSBusiness Operation Support System业务运营支撑系统CRMCustomer Relationship Management客户关系管理DMZDe-Militarized Zone非军事化去,即隔离区 ETLExtraction Transformation Loading抽取、转换和加载ESOPEnterprise Service Operation Platform集团客户业务综合运营平台FTPFile Transfer Protocol文本传输协议ICMPInternet Control Message ProtocolInternet 控制报文协议NGCCNext Generation Call Center下一代呼叫中心SQLStructured Query Language结构化查询语言VGOPValue-added Service General Operation Platform增值业务综合运营平台
Hadoop(MapReduce)
Hadoop是一个处理、存储和分析海量的分布式、非结构化数据的开源框架。
Hadoop是一个处理、存储和分析海量的分布式、非结构化数据的开源框架。最初由雅虎的Doug Cutting创建,Hadoop的灵感来自于 MapReduce ,MapReduce是谷歌在2000年代初期开发的用于网页索引的用户定义函数。它被设计用来处理分布在多个并行节点的PB级和EB级数据。
Hadoop集群运行在廉价的商用硬件上,这样硬件扩展就不存在资金压力。Hadoop现在是Apache软件联盟(The Apache Software Foundation)的一个项目,数百名贡献者不断改进其核心技术。基本概念:与将海量数据限定在一台机器运行的方式不同,Hadoop将大数据分成多个部分,这样每个部分都可以被同时处理和分析。
Hadoop如何工作
客户从日志文件、社交媒体供稿和内部数据存储等来源获得非结构化和半结构化数据。它将数据打碎成“部分”,这些“部分”被载入到商用硬件的多个节点组成的文件系统。Hadoop的默认文件存储系统是Hadoop分布式文件系统。文件系统(如HDFS)善于存储大量非结构化和半结构化数据,因为它们不需要将数据组织成关系型的行和列。
各“部分”被复制多次,并加载到文件系统。这样,如果一个节点失效,另一个节点包含失效节点数据的副本。名称节点充当调解人,负责沟通信息:如哪些节点是可用的,某些数据存储在集群的什么地方,以及哪些节点失效。
一旦数据被加载到集群中,它就准备好通过MapReduce 框架进行分析。客户提交一个“匹配”的任务( 通常是用Java编写的查询语句)给到一个被称为作业跟踪器的节点。该作业跟踪器引用名称节点,以确定完成工作需要访问哪些数据,以及所需的数据在集群的存储位置。一旦确定,作业跟踪器向相关节点提交查询。每个节点同时、并行处理,而非将所有数据集中到一个位置处理。这是Hadoop的一个本质特征。
当每个节点处理完指定的作业,它会存储结果。客户通过任务追踪器启动“Reduce”任务。汇总map阶段存储在各个节点上的结果数据,获得原始查询的“答案”,然后将“答案”加载到集群的另一个节点中。客户就可以访问这些可以载入多种分析环境进行分析的结果了。MapReduce 的工作就完成了。
一旦MapReduce 阶段完成,数据科学家和其他人就可以使用高级数据分析技巧对处理后的数据进一步分析。也可以对这些数据建模,将数据从Hadoop集群转移到现有的关系型数据库、数据仓库等传统IT系统进行进一步的分析。
而MapReduce是Google提出的一种云计算的核心计算模式,是一种分布式运算技术,也是简化的分布式编程模式,MapReduce模式的主要思想是将自动分割要执行的问题(例如程序)拆解成map(映射)和reduce(化简)的方式, 在数据被分割后通过Map 函数的程序将数据映射成不同的区块,分配给计算机机群处理达到分布式运算的效果,在通过Reduce 函数的程序将结果汇整,从而输出开发者需要的结果。
再来看看Hadoop的特性,第一,它是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。其次,Hadoop 是高效的,因为它以并行的方式工作,通过并行处理加快处理速度。Hadoop 还是可伸缩的,能够处理 PB 级数据。此外,Hado
文档评论(0)