网站大量收购独家精品文档,联系QQ:2885784924

太原理工大学数据挖掘考试题库教程.doc

  1. 1、本文档共11页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
太原理工大学数据挖掘考试题库教程

数据仓库:是一种新的数据处理体系结构,是面向主题的、集成的、不可更新的(稳定性)、随时间不断变化(不同时间)的数据集合,为企业决策支持系统提供所需的集成信息。 孤立点:指数据库中包含的一些与数据的一般行为或模型不一致的异常数据。 OLAP:OLAP是在OLTP的基础上发展起来的,以数据仓库为基础的数据分析处理,是共享多维信息的快速分析,是被专门设计用于支持复杂的分析操作,侧重对分析人员和高层管理人员的决策支持。 粒度:指数据仓库的数据单位中保存数据细化或综合程度的级别。粒度影响存放在数据仓库中的数据量的大小,同时影响数据仓库所能回答查询问题的细节程度。 数据规范化:指将数据按比例缩放(如更换大单位),使之落入一个特定的区域(如0-1)以提高数据挖掘效率的方法。规范化的常用方法有:最大-最小规范化、零-均值规范化、小数定标规范化。 关联知识:是反映一个事件和其他事件之间依赖或相互关联的知识。如果两项或多项属性之间存在关联,那么其中一项的属性值就可以依据其他属性值进行预测。 数据挖掘:从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。 OLTP:OLTP为联机事务处理的缩写,OLAP是联机分析处理的缩写。前者是以数据库为基础的,面对的是操作人员和低层管理人员,对基本数据进行查询和增、删、改等处理。 ROLAP:是基于关系数据库存储方式的,在这种结构中,多维数据被映像成二维关系表,通常采用星型或雪花型架构,由一个事实表和多个维度表构成。 MOLAP:是基于类似于“超立方”块的OLAP存储结构,由许多经压缩的、类似于多维数组的对象构成,并带有高度压缩的索引及指针结构,通过直接偏移计算进行存取。 数据归约:缩小数据的取值范围,使其更适合于数据挖掘算法的需要,并且能够得到和原始数据相同的分析结果。 广义知识:通过对大量数据的归纳、概括和抽象,提炼出带有普遍性的、概括性的描述统计的知识。 预测型知识:是根据时间序列型数据,由历史的和当前的数据去推测未来的数据,也可以认为是以时间为关键属性的关联知识。 偏差型知识:是对差异和极端特例的描述,用于揭示事物偏离常规的异常现象,如标准类外的特例,数据聚类外的离群值等。 遗传算法:是一种优化有哪些信誉好的足球投注网站算法,它首先产生一个初始可行解群体,然后对这个群体通过模拟生物进化的选择、交叉、变异等遗传操作遗传到下一代群体,并最终达到全局最优。 聚类:是将物理或抽象对象的集合分组成为多个类或簇(cluster)的过程,使得在同一个簇中的对象之间具有较高的相似度,而不同簇中的对象差别较大。 聚类:通过聚类分析可以检测孤立点,将类似的值组织成群或“聚类”,直观看,落在聚类之外的值被看成孤立点。 决策树:是用样本的属性作为结点,用属性的取值作为分支的树结构。它是分类规则挖掘的典型方法,可用于对新样本进行分类。 相异度矩阵:是聚类分析中用于表示各对象之间相异度的一种矩阵,n个对象的相异度矩阵是一个nn维的单模矩阵,其对角线元素均为0,对角线两侧元素的值相同。 频繁项集:指满足最小支持度的项集,是挖掘关联规则的基本条件之一。 支持度:规则A→B的支持度指的是所有事件中A与B同地发生的的概率,即P(A∪B),是AB同时发生的次数与事件总次数之比。支持度是对关联规则重要性的衡量。 可信度:规则A→B的可信度指的是包含A项集的同时也包含B项集的条件概率P(B|A),是AB同时发生的次数与A发生的所有次数之比。可信度是对关联规则的准确度的衡量。 关联规则:同时满足最小支持度阈值和最小可信度阈值的规则称之为关联规则。 23 计算机和人工检查结合:通过结合的方法识别孤立点。 24 回归(regression):利用拟合函数(回归函数)来平滑数据。如找出两个变量的“最佳”直线。涉及多个变量的多线性回归是进一步扩展,即找多维面。回归出适合的数据方程式,进而帮助消除噪声。 数据集成:需要统一原始数据中的所有矛盾之处,如字段的:同名异义、同名同义、单位不统一、字长不一致,从而把原始数据在最低层上加以转换、提炼和集成。 常见数据集成: 模式集成:如不同库中的id或Number对应(元数据一致可避免模式集成中的错误); 冗余问题:另一个表导出的属性,命名不一致导致的; 数据变换:将数据转换成适合于挖掘的形式,主要是找到数据的特征表示,对数据进行格式化处理,用维变换或转换方式减少有效变量的数目(降维)或找到数据的不变式 常见的数据变换: 平滑(smoothing):去掉数据中的噪声,如用分箱、聚类和回归; 聚集:对数据进行汇总和聚集  如聚集日销售数据,计算月或年销售额   (为多粒数据度分析准备数据立方体) 数据概化:利用概念分层,用高层次概念替换低层次“原始”数据,如 分

文档评论(0)

shuwkb + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档