基于计算机视觉的三七主根质量的分级方法.PDF

基于计算机视觉的三七主根质量的分级方法.PDF

  1. 1、本文档共4页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
基于计算机视觉的三七主根质量的分级方法

() 2016, 42(6):682–685. DOI:10.13331/ki.jhau.2016.06.018 Journal of Hunan Agricultural University (Natural Sciences) 基于计算机视觉的三七主根质量的分级方法 a a* a a b ( a.b. 650500) 摘 要110 2 R2 0.984 9 0.986 6 0.334 8 g 0.494 9 g 关 键 词 中图分类号TN911.73 文献标志码A 文章编号10071032(2016)06068204 Quality classification method of Panax notoginseng taproot based on computer vision a a* a a b Yu Jiayang , Wang Fenghua , Zhang Zhaoguo , Yang Wei , Zhu Hailong (a.Faculty of Modern Agricultural Engineering; b.Engineering Training Center,Kunming University of Science and Technology, Kunming ,650500) Abstract: In this study, 110 dried Panax notoginseng were selected as the test samples. Computer vision technology was used to obtain the images of Panax notoginseng taproot, which were deal with gray, binary and morphological to extract the length, width and projection area was ed after preprocess.The prediction models were built to calculate the projection area and the weight for cone Panax notoginseng and nodule Panax notoginseng, respectively. The results showed that the weight of mainroot was linely correlated with the projection area. The determination coefficients of cone Panax notoginseng and nodule Panax notoginseng were 0.984 9 and 0.986 6, respectively. The quality prediction model was verified by 10-fold cross-validation method. The average error was 0.3348 g and 0.494 9 g for cone Panax notoginseng and nodule Panax notoginseng, respectively. Keywords: Panax notoginseng taproot; qu

文档评论(0)

l215322 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档