- 1、本文档共10页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
线性代数公式必记教程
1、行列式
行列式共有个元素,展开后有项,可分解为行列式;
代数余子式的性质:
①、和的大小无关;
②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;
③、某行(列)的元素乘以该行(列)元素的代数余子式为;
代数余子式和余子式的关系:
设行列式:
将上、下翻转或左右翻转,所得行列式为,则;
将顺时针或逆时针旋转,所得行列式为,则;
将主对角线翻转后(转置),所得行列式为,则;
将主副角线翻转后,所得行列式为,则;
行列式的重要公式:
①、主对角行列式:主对角元素的乘积;
②、副对角行列式:副对角元素的乘积;
③、上、下三角行列式():主对角元素的乘积;
④、和:副对角元素的乘积;
⑤、拉普拉斯展开式:、
⑥、范德蒙行列式:大指标减小指标的连乘积;
⑦、特征值;
对于阶行列式,恒有:,其中为阶主子式;
证明的方法:
①、;
②、反证法;
③、构造齐次方程组,证明其有非零解;
④、利用秩,证明;
⑤、证明0是其特征值;
2、矩阵
是阶可逆矩阵:
(是非奇异矩阵);
(是满秩矩阵)
的行(列)向量组线性无关;
齐次方程组有非零解;
,总有唯一解;
与等价;
可表示成若干个初等矩阵的乘积;
的特征值全不为0;
是正定矩阵;
的行(列)向量组是的一组基;
是中某两组基的过渡矩阵;
对于阶矩阵: 无条件恒成立;
矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;
关于分块矩阵的重要结论,其中均、可逆:
若,则:
Ⅰ、;
Ⅱ、;
②、;(主对角分块)
③、;(副对角分块)
④、;(拉普拉斯)
⑤、;(拉普拉斯)
3、矩阵的初等变换与线性方程组
一个矩阵,总可经过初等变换化为标准形,其标准形是唯一确定的:;
等价类:所有与等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;
对于同型矩阵、,若;
行最简形矩阵:
①、只能通过初等行变换获得;
②、每行首个非0元素必须为1;
③、每行首个非0元素所在列的其他元素必须为0;
初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)
若,则可逆,且;
②、对矩阵做初等行变化,当变为时,就变成,即:;
③、求解线形方程组:对于个未知数个方程,如果,则可逆,且;
初等矩阵和对角矩阵的概念:
①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;
②、,左乘矩阵,乘的各行元素;右乘,乘的各列元素;
③、对调两行或两列,符号,且,例如:;
④、倍乘某行或某列,符号,且,例如:;
⑤、倍加某行或某列,符号,且,如:;
矩阵秩的基本性质:
①、;
②、;
③、若,则;
④、若、可逆,则;(可逆矩阵不影响矩阵的秩)
⑤、;(※)
⑥、;(※)
⑦、;(※)
⑧、如果是矩阵,是矩阵,且,则:(※)
Ⅰ、的列向量全部是齐次方程组解(转置运算后的结论);
Ⅱ、
⑨、若、均为阶方阵,则;
三种特殊矩阵的方幂:
①、秩为1的矩阵:一定可以分解为列矩阵(向量)行矩阵(向量)的形式,再采用结合律;
②、型如的矩阵:利用二项展开式;
二项展开式:;
注:Ⅰ、展开后有项;
Ⅱ、
Ⅲ、组合的性质:;
③、利用特征值和相似对角化:
伴随矩阵:
①、伴随矩阵的秩:;
②、伴随矩阵的特征值:;
③、、
关于矩阵秩的描述:
①、,中有阶子式不为0,阶子式全部为0;(两句话)
②、,中有阶子式全部为0;
③、,中有阶子式不为0;
线性方程组:,其中为矩阵,则:
①、与方程的个数相同,即方程组有个方程;
②、与方程组得未知数个数相同,方程组为元方程;
线性方程组的求解:
①、对增广矩阵进行初等行变换(只能使用初等行变换);
②、齐次解为对应齐次方程组的解;
③、特解:自由变量赋初值后求得;
由个未知数个方程的方程组构成元线性方程:
①、;
②、(向量方程,为矩阵,个方程,个未知数)
③、(全部按列分块,其中);
④、(线性表出)
⑤、有解的充要条件:(为未知数的个数或维数)
4、向量组的线性相关性
个维列向量所组成的向量组:构成矩阵;
个维行向量所组成的向量组:构成矩阵;
含有有限个向量的有序向量组与矩阵一一对应;
①、向量组的线性相关、无关 有、无非零解;(齐次线性方程组)
②、向量的线性表出 是否有解;(线性方程组)
③、向量组的相互线性表示 是否有解;(矩阵方程)
矩阵与行向量组等价的充分必要条件是:齐次方程组和同解;(例14)
;(例15)
维向量线性相关的几何意义:
①、线性相关 ;
②、线性相关 坐标成比例或共线(平行);
③、线性相关 共面;
线性相关与无关的两套定理:
若线性相关,则必线性相关;
若线性无关,则必线性无关;(向量的个数加加减减,二者为对偶)
若维向量组的每个向量上添上个分量,构成维向量组:
若线性无关,则也线性无关;反之
文档评论(0)