网站大量收购闲置独家精品文档,联系QQ:2885784924

人工智能控制技术在电气传动中的应用研究.docVIP

人工智能控制技术在电气传动中的应用研究.doc

  1. 1、本文档共4页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
人工智能控制技术在电气传动中的应用研究.doc

  人工智能控制技术在电气传动中的应用研究 人工智能控制技术在电气传动中的应用研究 【摘 要】阐述了人工智能控制技术的发展概况,介绍了该控制技术的优势,从模糊控制、神经网络和遗传算法等方面探讨了该技术的应用特点及发展前景。    【关键词】人工智能;神经网络控制;模糊神经元控制;自适应神经网络   .Lamdani和Sugeno型。到目前为止只有Mamdani模糊控制器用于调速控制系统中。值得注意的是这两种控制器都有规则库,它是一个if-then模糊规则集。但Sugeno控制器的典型规则是如果x是A,并且y是B,那么Z=f(x,y)。这里A和B是模糊集;Z=f(x,y)是x,y的函数,通常是输入变量x,y的多项式。当f是常数,就是零阶Sugeno模型,因此Sugeno是Mamdani控制器的特例。Mamdani控制器由下面四个主要部分组成。    1)模糊化实现输入变量的测量、量化和模糊化。隶属函数有多种形式。    2)知识库由数据库和语言控制规则库组成。开发规则库的主要方法是:把专家的知识和经历用于应用和控制目标;建模操作器的控制行动;建模过程;使用自适应模糊控制器和人工神经网络推理机制。    3)推理机制是模糊控制器的核心,能模仿人的决策和推理模糊控制行为。    4)反模糊化实现量化和反模糊化。有很多反模糊化技术,例如,最大化反模糊化,中间平均技术等。    在许多资料中,介绍了多种被模糊化的控制器,但这应与充分模糊控制器完全区分开来,充分模糊控制器才是完全意义上的模糊控制器,被模糊化的控制器易于实现,往往通过改造现有古典控制器得以实现,如被模糊化的PI控制器(FPIC)使用模糊逻辑改变控制器的比例、积分参数,从而使系统的性能得到提高。控制器参数的微小变化可能导致特性的极大提高,被模糊化的控制器参数调整方法如下:P(ti)=P(ti-1)+kPCP,I(ti)=I(ti-1)CI。但若应用充分模糊逻辑控制器,系统响应远远优于FPIC和最优古典PI控制器,用于最优化常规控制器的计算时间比模糊化控制器所需的时间多得 多。因此,使用最小配置的FPIC控制器是可能的选择之一,事实上,这也是用现有驱动装置实现的最简单方法。    2.1.2ANNS的应用    过去20多年,人工神经网络(ANNS)在模式识别和信号处理中得到广泛运用。由于ANNS有一致性的非线性函数估计器,因此它也可有效地运用于电气传动控制领域,其优势是不需要被控系统的数学模型,一致性很好,对噪音不敏感。.L.另外,由于ANNS是并行结构,它很适合多传感器输入运用,如在条件监控、诊断系统中能增强决策的可靠性。如果网络有足够多的隐藏层和隐藏结点以及适宜的激励函数,多层ANN只能实现需要的映射,没有直接的技术选择最优隐藏层、结点数和激励函数,通常用尝试法解决这个问题,反向传播训练算法是基本的最快下降法,输出结点的误差反馈回网络,用于权重调整,有哪些信誉好的足球投注网站最优。输出结点的权重调整迭代不同于隐藏结点的权重调整迭代。通过使用反向传播技术,能得到需要的非线性函数近似值,该算法包括有学习速率参数,对网络的特性有很大影响。    反向传播算法是多层前聩ANN最广泛使用的学习技术之一。但有时网络的收敛速度很慢,改进算法的开发是一个重要研究领域。英国Aberdeen大学在这方面取得过令人鼓舞的成绩,他们把常规的反向传播算法和其他AI技术结合起来,使得网络快速收敛,鲁棒性更好。值得注意的是在神经模糊实现中,有时必须使用不同形式的反向传播技术,而不是已知的标准形式。反向传播技术是在线(Supervised)学习技术,需要充分的输入-输出数据对,虽然这种限制也可以用另外的方法加以克服,但该方法是离线的。    常规技术就能实现简单的映射,而神经网络能实现更复杂的映射,并且由于它的并行结构这种映射相当快。辩识ANN用于训练第二个ANN(神经控制器,即过程控制器),因此,过程输出跟随给定信号,学习过程用的是反向传播算法。该方法分为二步:第一步,ANN被训练用来代表控制对象的响应,这需要用到表示控制对象输出和控制输入关系的微分方程。第二步,把ANN用于控制对象模型的辩识方案中。把ANN与控制对象并行连接,每次迭代时,给ANN提供给定信号作为ANN输入信号。辩识意味着调整权重,使ANN输出信号(即网络输出)和控制对象输出信号(即正输出)的误差最小。在辩识阶段,全局误差(即方差之和)以固定时间间隔被计算并与希望的最小值比较。ANN是神经控制器被用于训练以给出需要的控制对象响应。为了训练这个网络,在每次采样输出时,必须知道误差(Ec)但仅仅只知道控制对象输出和希望输出(由给定输入决定)的最后误差,辩识方案中的第一个ANN可将最后误差Ec反向传播,用来训练控制器ANN。在误差最小化过程中,全局误差能被最小化

文档评论(0)

ggkkppp + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档