- 1、本文档共3页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
企业财务预警PCA—SVM模型研究.doc
企业财务预警PCA—SVM模型研究
企业财务预警PCASVM模型研究 随着我国社会经济发展脚步的不断加快,提高企业财务管理效率也成为了诸多企业所面临的一项重大课题。传统财务预警包括一元判别法和多元判别法,虽然这些预警模型都能够在一定程度上满足企业财务的管理需求,但同时也存在着一些有待解决的问题,比如说线性判别的局限性、网络推广能力不高等。为此,本文介绍了一种基于主成分分析和支撑向量机相结合的企业财务预警模型,以此来更好的对企业财务预警模型进行完善,促进企业的可持续发展。
1、企业财务预警概述
所谓财务预警,主要是指根据企业所提供的财务报表以及其他会计资料,利用金融、企业管理、市场营销等理论,对企业当前的经营状况和财务活动等工作进行全面、系统的分析预测,从而通过预测结果来发现企业发展过程中所面临的风险,并根据企业发展的实际情况,采取相应的措施规避风险,以此来避免这些风险发生而给企业带来的经济损失。就以往企业财务预警的分类来看,主要包括两种类型,即一元判别法和多元判别法。其中,一元判别法又称单变量模型,这种财务预警模型是以某个单项指标作为评判标准的预警模型,虽然能够在某些方法将企业的经营状况和财务活动反映出来,但由于评判标准存在片面性,因此,并不能全面的将财务特征的缺陷表现出来。多元判别法的出现将一元判别法的缺点进行的有效弥补,该预警模型主要是通过多元线性判别式产生判别分,并通过判别分来对企业的经营状况和财务活动进行全面分析、预测,从而得到最为全面的预测结果。但无论是一元判别法还是多元判别法,都无法突破线性判别方法的局限性,从而导致无法进行动态学习和调整。
为了更好的对企业财务预警模型进行完善,专家尝试将神经网络应用到预警模型中。所谓神经网络,是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。但是,这种方法需要大量的样本数据作为基础,一旦样本数据的数量达不到要求,那么就会直接影响到神经网络的推广能力。近年来,神经网络在企业财务预警中的应用越来越广泛,如何将其在财务预警中的作用充分发挥出来也成为了专家所面临的重大课题。
2、企业财务预警PCASVM模型构建与研究思路
本文所介绍的PCASVM模型的构建大致可以分为两个部分,即对数据进行主成分分析和利用SVM进行分类。其中,对数据进行主成分分析主要是在诸多变量中选取几个最具代表性、信息含量最丰富的变量作为主成分,然后对其进行分析并形成样本数据,这样做是为了尽可能减少数据分析时的复杂操作,从而将大量的数据简单化,从而为接下来的数据处理工作奠定基础。利用SVM进行分类实质上是一种统计学习方法,这种方法最适合小样本问题,是将空间中不可分问题通过非线性高换映射到高维线性可分的特征空间,并在此基础上进行分类。
3、实证研究及分析
为了更好的对财务预警PCASVM模型进行研究,本文选取了15家公司3年的财务报表和相关的会计资料作为基础数据,这些公司均为房地产公司,所要证实的内容主要包括2点:一是财务报表可以确保一定的真实性;二是以原始数据为主,可以尽可能避免不同分析方法所产生的误差。
3.1、原始比率变量分析
首先,提取主成分实现维数压缩,减小各输入值之间的相关性,在对15家公司的财务报告进行分析之后,发现整体原始数据上存在较大的冗余性,可以进行简化。同时,流动比率与速动比率之间存在较强的相关性,其他的几项指标之间也都存在着较大的相关性,比如说总资产周转率、净资产收益率和成本费用利润率等。相比之下,也有一些相关性比较弱的指标,比如说股东权益比率、存货周转率以及流动资产周转率等。
3.2、主成分选择及解释
表1所介绍的是主成分的特征值和贡献率,如果想要对表1中的5个主成分因子进行解释,就必须利用原始的财务数据,换句话说,原始数据域主成分因子之间存在着必然的联系。其中,主成分1需要由股东权益比率、主营业务利润率、成本费用利润率、净资产收益率以及总资产收益率解释;主成分2需要由流动比率、速动比率、资产负债率和负债权益比率解释;主成分3需要由负债权益比率、固定资产周转率和总资产周转率解释;主成分4需要由现金比率和主营业务毛利率解释;主成分5需要由应收账款周转率解释。
3.3、建立模型识别部分
从上文的分析我们已经得到了5个典型的数据样本,我们将主成分1到主成分5作为输入,以SVM作为模式识别工具。在实际操作中,我们以软件Maltalb6.5作为主要软件,采用SMO训练算法,结合DDAG实现多类划分。通过该实验的设计和实施,我们完成了两种分类,即二类划分和三类划分,划分的具体结果如表2和表3所示:
从表2我们能够看出,正常类样本100%正
您可能关注的文档
最近下载
- 2025年陕西省西安中学高一入学分班考试语文作文押题及范文分析.pdf
- 2025届福建省泉州市高三上学期一检语文作文“对于学习而言,知道自己不会什么与比知道自己会什么哪个更重要”分析及范文 .pdf
- 上海电力大学-计算机硬件技术-期末简答题.pdf
- 《“双减”背景下小学高段数学作业的优化策略研究》中期报告.pdf VIP
- 平行钢绞线斜拉索等值张拉力精确计算方法.pdf
- 中国古典舞技能技巧教程.pdf
- 2024-2025学年北京市朝阳区人教版六年级上册期中测试数学试卷[含答案].pdf
- 外科降低抗菌药物使用强度PDCA (2).ppt
- 企业年终工作总结汇报 (4).pptx VIP
- 异常子宫出血的护理查房.ppt
文档评论(0)