网站大量收购闲置独家精品文档,联系QQ:2885784924

07 次数资料分析——.doc

  1. 1、本文档共16页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
07 次数资料分析——

第七章 次数资料分析——(2检验 前面介绍了计量资料的统计分析方法((t检验法与方差分析法。在畜牧、水产等科学研究中,除了分析计量资料以外,还常常需要对次数资料、等级资料进行分析。等级资料实际上也是一种次数资料。次数资料服从二项分布或多项分布,其统计分析方法不同于服从正态分布的计量资料。本章将分别介绍对次数资料、等级资料进行统计分析的方法。 第一节 统计量与分布 一、统计量的意义 为了便于理解,现结合一实例说明 (读作卡方) 统计量的意义。根据遗传学理论,动物的性别比例是1:1。统计某羊场一年所产的876只羔羊中,有公羔428只,母羔448只。按1:1的性别比例计算,公、母羔均应为438只。以A表示实际观察次数,T表示理论次数,可将上述情况列成表7-1。 表7-1 羔羊性别实际观察次数与理论次数 性别 实际观察次数A 理论次数T A-T (A-T)2/T 公 428() 438() -10 0.2283 母 448() 438() 10 0.2283 合计 876 876 0 0.4566 从表7-1看到,实际观察次数与理论次数存在一定的差异,这里公、母各相差10只。 这个差异是属于抽样误差(把对该羊场一年所生羔羊的性别统计当作是一次抽样调查)、还是羔羊性别比例发生了实质性的变化?要回答这个问题, 首先需要确定一个统计量用以表示实际观察次数与理论次数偏离的程度;然后判断这一偏离程度是否属于抽样误差,即进行显著性检验。为了度量实际观察次数与理论次数偏离的程度,最简单的办法是求出实际观察次数与理论次数的差数。从表7-1看出:A1-T1 =-10,A2-T2=10,由于这两个差数之和为0, 显然不能用这两个差数之和来表示实际观察次数与理论次数的偏离程度。为了避免正、负抵消,可将两个差数A1-T1、A2-T2平方后再相加,即计算∑(A-T)2,其值越大,实际观察次数与理论次数相差亦越大,反之则越小。但利用∑(A-T)2表示实际观察次数与理论次数的偏离程度尚有不足。例如某一组实际观察次数为505、理论次数为500,相差5;而另一组实际观察次数为26、 理论次数为21,相差亦为5。显然这两组实际观察次数与理论次数的偏离程度是不同的。因为前者是相对于理论次数500相差5,后者是相对于理论次数21相差5。为了弥补这一不足,可先将各差数平方除以相应的理论次数后再相加,并记之为,即 (7-1) 也就是说是度量实际观察次数与理论次数偏离程度的一个统计量,(2越小,表明实际观察次数与理论次数越接近;=0,表示两者完全吻合;越大,表示两者相差越大。 对于表7-1的资料,可计算得 = 表明实际观察次数与理论次数是比较接近的。 二、分布 上面在属于离散型随机变量的次数资料的基础上引入了统计量, 它近似地服从统计学中一种连续型随机变量的概率分布((分布。下面对统计学中的分布作一简略介绍。 设有一平均数为μ、方差为的正态总体。现从此总体中独立随机抽取n个随机变量:x1、x2、…、xn,并求出其标准正态离差: , ,…, 记这n个相互独立的标准正态离差的平方和为: == (7-2) 它服从自由度为n的分布,记为 ~ (2 (n); 若用样本平均数代替总体平均数μ,则随机变量 (2= (7-3) 服从自由度为n-1的分布,记为 ~ 因此,分布是由正态总体随机抽样得来的一种连续型随机变量的分布。显然,≥0,即的取值范围是[0,+∞(;分布密度曲线是随自由度不同而改变的一组曲线。随自由度的增大,曲线由偏斜渐趋于对称;df≥30时, 接近平均数为 的正态分布。图7-1给出了几个不同自由度的概率分布密度曲线。 三、的连续性矫正 由(7-1)式计算的只是近似地服从连续型随机变量分布。在对次数资料进行检验利用连续型随机变量分布计算概率时,常常偏低,特别是当自由度为1时偏差较大。Yates(1934)提出了一个矫正公式,矫正后的值记为: = (7-4) 当自由度大于1时,(7-1)式的分布与连续型随机变量分布相近似,这时,可不作连续性矫正,但要求各组内的理论次数不小于5。若某组的理论次数小于5,则应把它与其相邻的一组或几组合并,直到理论次数大于5为止。 第二节 适合性检验 一、适合性检验的意义 判断实际观察的属性类别分配是否符合已知属性类别分配理论或学说的假设检验称为适合性检验。在适合性检验中,无效假设为H0:实际

文档评论(0)

ranfand + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档