google AlphaGo深度学习算法论文(发布至Nature).pdf

google AlphaGo深度学习算法论文(发布至Nature).pdf

  1. 1、本文档共10页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
google AlphaGo深度学习算法论文(发布至Nature).pdf

Under review as a conference paper at ICLR 2016 BETTER COMPUTER GO PLAYER WITH NEURAL NET- WORK AND LONG-TERM PREDICTION Yuandong Tian Yan Zhu Facebook AI Research Rutgers University Menlo Park, CA 94025 Facebook AI Research yuandong@ yz328@ ABSTRACT 6 1 0 Competing with top human players in the ancient game of Go has been a long- 2 term goal of artificial intelligence. Go’s high branching factor makes traditional n search techniques ineffective, even on leading-edge hardware, and Go’s evaluation a function could change drastically with one stone change. Recent works [Maddi- J son et al. (2015); Clark Storkey (2015)] show that search is not strictly nec- 6 essary for machine Go players. A pure pattern-matching approach, based on a 2 Deep Convolutional Neural Network (DCNN) that predicts the next move, can perform as well as Monte Carlo Tree Search (MCTS)-based open source Go en- ] G gines such as Pachi [Baudis Gailly (2012)] if its search budget is limited. We extend this idea in our bot named darkforest, which relies on a DCNN designed for L long-term predictions. Darkforest substantially improves the win rate for pattern- . s matching approaches against MCTS-based approaches, even with looser search c

您可能关注的文档

文档评论(0)

tangtianxu1 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档