- 1、本文档共18页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
A Genetic Algorithm for Optimal Design of Spectrally Selective k-Space Douglas C. Noll, Ph.D. Depts. of Biomedical Engineering and Radiology University of Michigan, Ann Arbor Supported by NIH Grant NS32756 Acknowledge the assistance of Sangwoo Lee Outline Background on Spectral-Spatial Imaging Optimization using Genetic Algorithms Optimization Results Experimental Findings Summary Stochastic Acquisitions Sheffler and Hennig (MRM, 35:569-576, 1996) Recognition that particular acquisitions could be spectrally and spatially selective Spectral bandwidth ~ 1/Tread Rosette Acquisitions Spectral properties similar to stochastic imaging, but: Extra suppression of low spatial frequencies Simple parameterization No sharp corners in k-space (reduced slew req.) SMART Imaging Simultaneous Multislice Acquisition using Rosette Trajectories (SMART) Excitation of several (e.g. 3) slices Use of slice gradient to modulate slices to different frequencies Use of spectral properties of acquisition to differentiate slices Demodulation of raw data shifts from one slice to another SMART Imaging The Rosette k-space Trajectory K-space can be described by:k(t) = A sin(w1 t)exp(i w2 t) w1 = oscillation frequency w2 = rotation frequency Peak gradient and slew rate constraints:gmax = (2p/g) A w1 smax = (2p/g) A (w12 + w22) Stochastic Rosettes Rosette acquisitions can be randomized by treating each petal as a separate unit Each petal can be characterized by two random numbers Method: Randomly select A from [0.9, 1.1]xA0 Determine w1 from gmax equation Determine w2,max from smax equation Randomly select w2 from [0.5, 1.0]x w2,max Stochastic Rosettes Petals are spliced together so that there are no discontinuities in the gradient waveforms Challenge: Optimization Stochastic rosette acquisitions: Easy to design Large number of parameters No obvious relationship between parameters and acquisition performance There are an infinite choice of parameters for stochastic rosette acquisiti
文档评论(0)