SVDNetforPedestrianRetrieval.PDF

  1. 1、本文档共9页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
SVDNetforPedestrianRetrieval.PDF

SVDNet for Pedestrian Retrieval Yifan Sun ,Liang Zheng ,Weijian Deng ,Shengjin Wang Tsinghua University University of Technology Sydney University of Chinese Academy of Sciences sunyf15@mails.tsinghua.edu.cn 7 1 0 2 Abstract r p A This paper proposes the SVDNet for retrieval problems, with focus on the application of person re-identification (re- 0 ID). We view each weight vector within a fully connected 2 (FC) layer in a convolutional neuron network (CNN) as a ] projection basis. It is observed that the weight vectors are V usually highly correlated. This problem leads to correla- C tions among entries of the FC descriptor, and compromises . the retrieval performance based on the Euclidean distance. s c To address the problem, this paper proposes to optimize the [ deep representation learning process with Singular Vector Decomposition (SVD). Specifically, with the restraint and Figure 1: A cartoon illustration of the correlation among 3 v relaxation iteration (RRI) training scheme, we are able to weight vectors and its negative effect. The weight vectors 3 iteratively integrate the orthogonality constraint in CNN are contained in the last fully connected layer, e.g., FC8 9 training, yielding the so-called SVDNet. We conduct ex- layer of CaffeNet [ 12] or FC layer of ResNet-50 [11]. There 6 periments on the Market-1501, CUHK03, and DukeMTMC- are three training IDs in red, pink and blue clothe

文档评论(0)

tangtianxu1 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档