Theoryofthebackpropagationneuralnetwork-Neural.PDF

Theoryofthebackpropagationneuralnetwork-Neural.PDF

  1. 1、本文档共13页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Theoryofthebackpropagationneuralnetwork-Neural.PDF

Theory of the Backpropagation Neural Network Robert Hecht-Nielsen HNC, Inc. 5501 Oberlin Drive San Diego, CA 92121 619-546-8877 and Department of Electrical and Computer Engineering University of Caliiomia at San Diego La Jolla, CA 92139 Abstract Backpropagationis currently the most widely applied neural network architecture. Tbe informationprocessing operation that it carries out is the approximation of a mapping or function f :A C R -R, from a bounded subset A of n-dimensional Euclidean space to a bonnded subset AA] of m-dimensional Euclidean space, by means of training on examples (XI,yl), (XZ, y ~ ). ., .,(Xt. yt), . ..of the mappings action, where yk = f ( X k ) . It is assumed that such examples are generated by selecting XI vectors randomly from A in accordance with a fixed probability density function Ax). This paper presents a survey of the basic theory of the backpropagation neural network architecture covering the areas of: architectnral design, performance measurement, function approximation capability. and learning. The survey includes previously known material, as well as some new results: a formulation of the backpropagation neural network architecture to make it a valid neural network (past formnlationsviolated

文档评论(0)

tangtianxu1 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档