- 1、本文档共28页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
牛津大学机器学习课件12
Reinforcement learning
Nando de Freitas
The Promise of Reinforcement Learning
Learning to act through trial and error. Environment
{ observation, reward } { action }
• An agent interacts with an
Agent
environment and learns by
maximizing a scalar reward signal.
• No models, labels, demonstrations,
or any other human-provided
supervision signal.
• Representation has been a
challenge/missing.
[Volodymyr Mnih]
Deep Reinforcement Learning
• Combining deep neural networks with RL.
• Learn to act from high-dimensional sensory inputs.
• Is a noisy, sparse, and delayed reward signal sufficient for
training deep networks? Credit assignment problem.
Environment
{ observations, reward } { action }
[Volodymyr Mnih]
Example: Learning to play Atari
David Silver
Direct policy search example: Attention
[Ba, Mnih, Kavuckuoglu]
Results
MNIST Street View House
sequences Number sequences
• The attention-based model achieves state-of-the-art accuracy on the
SVHN multi-digit task - 3.9% error.
• 4 times fewer floating point operations than the best ConvNet.
[Volodymyr Mnih et al]
Attention-Based Game Agent
• Roughly the same model and training method can be used
in a game-playing agent.
• The agent learns to track a ball without being told to do so.
文档评论(0)