- 1、本文档共56页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
第7单元 相关分析 6.3 二元定序变量的相关分析 6.3.1 统计学上的定义和计算公式 定义:定序变量又称为有序(ordinal)变量、顺序变量,它取值的大小能够表示观测对象的某种顺序关系(等级、方位或大小等),也是基于“质”因素的变量。例如,“最高学历”变量的取值是:1—小学及以下、2—初中、3—高中、中专、技校、4—大学专科、5—大学本科、6—研究生以上。由小到大的取值能够代表学历由低到高。 Spearman和Kendalls tua-b等级相关系数用以衡量定序变量间的线性相关关系,它们利用的是非参数检验的方法。 计算公式如下。 Spearman等级相关系数为 对Spearman等级相关系数的统计检验,一般如果个案数n≤30,将直接利用Spearman等级相关统计量表,SPSS将自动根据该表给出对应的相伴概率值。 对Kendalls tua-b等级相关系数的统计检验,一般如果个案数n≤30,将直接利用Kendalls tua-b等级相关统计量表,SPSS将自动根据该表给出对应的相伴概率值。 6.3.2 SPSS中实现过程 ? 研究问题 某语文老师先后两次对其班级学生同一篇作文加以评分,两次成绩分别记为变量“作文1”和“作文2”,数据如表6-2所示。问两次评分的等级相关有多大,是否达到显著水平? 表6-2 学生作文两次的得分情况 90.00 88.00 herry 90.00 95.00 jake 78.00 73.00 joke 80.00 75.00 marry 75.00 87.00 caber 80.00 85.00 david 70.00 68.00 chen 75.00 79.00 john 65.00 59.00 laly 75.00 77.00 wish 85.00 80.00 jess 93.00 96.00 watet 65.00 67.00 smith 92.00 89.00 hah 73.00 75.00 shizg 70.00 62.00 yu 82.00 78.00 yaju 83.00 86.00 hxh 作 文 2 作 文 1 人 名 * SPSS应用 * 描述变量之间线性相关程度的强弱,并用适当的统计指标表示出来的过程为相关分析。可根据研究的目的不同,或变量的类型不同,采用不同的相关分析方法。本章介绍常用的相关分析方法:二元定距变量的相关分析、二元定序变量的相关分析、质与量的相关、品质相关和偏相关分析。 6.1 相关分析的基本概念 任何事物的变化都与其他事物是相互联系和相互影响的,用于描述事物数量特征的变量之间自然也存在一定的关系。变量之间的关系归纳起来可以分为两种类型,即函数关系和统计关系。 当一个变量x取一定值时,另一变量y可以按照确定的函数公式取一个确定的值,记为y?=?f(x),则称y是x的函数,也就时说y与x两变量之间存在函数关系。又如,某种商品在其价格不变的情况下,销售额和销售量之间的关系就是一种函数关系:销售额=价格×销售量。 函数关系是一一对应的确定性关系,比较容易分析和测度,可是在现实中,变量之间的关系往往并不那么简单。 相关系数的取值范围在?1和+1之间,即?1≤r≤+1。其中: ? 若0<r≤1,表明变量之间存在正相关关系,即两个变量的相随变动方向相同; ? 若?1≤r<0,表明变量之间存在负相关关系,即两个变量的相随变动方向相反; 为了判断r对ρ的代表性大小,需要对相关系数进行假设检验。 (1)首先假设总体相关性为零,即H0为两总体无显著的线性相关关系。 (2)其次,计算相应的统计量,并得到对应的相伴概率值。如果相伴概率值小于或等于指定的显著性水平,则拒绝H0,认为两总体存在显著的线性相关关系;如果相伴概率值大于指定的显著性水平,则不能拒绝H0,认为两总体不存在显著的线性相关关系。 在实际中,因为研究目的不同,变量的类型不同,采用的相关分析方法也不同。比较常用的相关分析是二元定距变量的相关分析、二元定序变量的相关分析、质与量相关、品质相关和偏相关分析。 6.2 二元定距变量的相关分析 二元变量的相关分析是指通过计算变量间两两相关的相关系数,对两个或两个以上变量之间两两相关的程度进行分析。根据所研究的变量类型不同,又可以分为二元定距变量的相关分析和二元定序变量的相关分析。 在二元变量的相关分析过程中比较常用的几个相关系数是Pearson简单相关系数、Spearman和Kendalls tua-b等级相关系数。 定义:二元定距变量的相关分析是指通过计算定距变量间两两相关的相关系数,对两个或两个以上定距变量之间两两相
文档评论(0)