- 1、本文档共30页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
选修1-1回归分析的基本思想及其初步应用要点
探究: 身高为172cm的女大学生的体重一定是60.316kg吗?如果不是,你能解析一下原因吗? 答: (1)身高为172cm的女大学生的体重不一定是60.316kg,但一般可以认为她的体重在60.316kg左右。 (2)60.316kg是身高为172cm的女大学生的平均体重的估计值,而不一定是某位身高为172cm的女大学生的体重的真实体重,也就是说身高为172cm的女大学生的平均体重大约是60.316kg,并且大部分身高为172cm的女大学生的体重在60.316kg附近. (3)用这个回归方程不能给出每个身高为172cm的女大学生的体重的预测值,只能给出她们平均体重的预测值。 从散点图还看到,样本点散布在某一条直线的附近,而不是在一条直线上,所以不能用一次函数y=bx+a模型描述它们关系。 怎么处理呢? 函数模型与回归模型之间的差别 函数模型: 回归模型: 5、我们可以用下面的线性回归模型来表示: y=bx+a+e, 其中a和b为模型的未知参数,e称为随机误差。 自变量x称为解释变量 因变量y称为预报变量 思考: 产生随机误差项e的原因是什么? 随机误差e的来源: 1、忽略了其它因素的影响:影响身高 y 的因素不只是体重 x,可能还包括遗传基因、饮食习惯、运动情况、生长环境等因素; 2、用线性回归模型近似真实模型所引起的误差; 3、身高 y 的观测误差。 以上三项误差越小,说明我们的回归模型的拟合效果越好。 线性回归模型: 线性回归模型y=bx+a+e增加了随机误差项e,因变量y的值由自变量x和随机误差项e共同确定,即自变量x只能解析部分y的变化。 自变量x称为解析变量,因变量y称为预报变量。 表3-2列出了女大学生身高和体重的原始数据以及相应的残差数据。 在研究两个变量间的关系时,首先要根据散点图来粗略判断它们是否线性相关, 是否可以用回归模型来拟合数据。 6、残差分析与残差图的定义: 然后,我们可以通过残差 来判断模型拟合的效果,判断原始 数据中是否存在可疑数据,这方面的分析工作称为残差分析。 编号 1 2 3 4 5 6 7 8 身高/cm 165 165 157 170 175 165 155 170 体重/kg 48 57 50 54 64 61 43 59 残差 -6.373 2.627 2.419 -4.618 1.137 6.627 -2.883 0.382 可以利用图形来分析残差特性,作图时纵坐标为残差,横坐标可以选为样本编号,或身高数据,或体重估计值等,这样作出的图形称为残差图。 * 包军先 制作 残差图的制作及作用。 坐标纵轴为残差变量,横轴可以有不同的选择; 若模型选择的正确,残差图中的点应该分布在以横轴为心的带形区域; 对于远离横轴的点,要特别注意。 身高与体重残差图 异常点 错误数据 模型问题 几点说明: 第一个样本点和第6个样本点的残差比较大,需要确认在采集过程中是否有人为的错误。如果数据采集有错误,就予以纠正,然后再重新利用线性回归模型拟合数据;如果数据采集没有错误,则需要寻找其他的原因。 另外,残差点比较均匀地落在水平的带状区域中,说明选用的模型计较合适,这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高。 思考:如何刻画预报变量在多大程度上与解释变量(身高)有关?在多大程度上与随机误差有关? R2的值越大,说明残差平方和越小,也就是说模型拟合效果越好。 在线性回归模型中,R2表示解析变量对预报变量变化的贡献率。 R2越接近1,表示回归的效果越好 如果某组数据可能采取几种不同回归方程进行回归分析,则可以通过比较R2的值来做出选择,即选取R2较大的模型作为这组数据的模型。 我们可以用相关指数R2来刻画回归的效果,其计算公式是 7、注意回归模型的适用范围: (1)回归方程只适用于我们所研究的样本的总体。样本数据来自哪个总体的,预报时也仅适用于这个总体。 (2)模型的时效性。利用不同时间段的样本数据建立的模型,只有用来对那段时间范围的数据进行预报。 (3)建立模型时自变量的取值范围决定了预报时模型的适用范围,通常不能超出太多。 (4)在回归模型中,因变量的值不能由自变量的值完全确定。正如前面已经指出的,某个女大学生的身高为172cm,我们不能利用所建立的模型预测她的体重,只能给出身高172cm的女大学生的平均体重的预测值。 8、建立回归模型的基本步骤为: (1)确定研究对象,明确哪个变量是解析变量,哪个变量是预报变量。 (2)画出确定好的解析变量和预报变量的散点图,观
文档评论(0)