- 1、本文档共20页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
朴素贝叶斯分类的应用
朴素贝叶斯分类器的应用
作者:?阮一峰
日期:?2013年12月16日
生活中很多场合需要用到分类,比如新闻分类、病人分类等等。
本文介绍朴素贝叶斯分类器(Naive Bayes classifier),它是一种简单有效的常用分类算法。
一、病人分类的例子
让我从一个例子开始讲起,你会看到贝叶斯分类器很好懂,一点都不难。
某个医院早上收了六个门诊病人,如下表。
症状 职业 疾病
打喷嚏 护士 感冒? 打喷嚏 农夫 过敏? 头痛 建筑工人 脑震荡? 头痛 建筑工人 感冒? 打喷嚏 教师 感冒? 头痛 教师 脑震荡
现在又来了第七个病人,是一个打喷嚏的建筑工人。请问他患上感冒的概率有多大?
根据贝叶斯定理:
P(A|B) = P(B|A) P(A) / P(B)
可得
P(感冒|打喷嚏x建筑工人)? = P(打喷嚏x建筑工人|感冒) x P(感冒)? / P(打喷嚏x建筑工人)
假定打喷嚏和建筑工人这两个特征是独立的,因此,上面的等式就变成了
P(感冒|打喷嚏x建筑工人)? = P(打喷嚏|感冒) x P(建筑工人|感冒) x P(感冒)? / P(打喷嚏) x P(建筑工人)
这是可以计算的。
P(感冒|打喷嚏x建筑工人)? = 0.66 x 0.33 x 0.5 / 0.5 x 0.33? = 0.66
因此,这个打喷嚏的建筑工人,有66%的概率是得了感冒。同理,可以计算这个病人患上过敏或脑震荡的概率。比较这几个概率,就可以知道他最可能得什么病。
这就是贝叶斯分类器的基本方法:在统计资料的基础上,依据某些特征,计算各个类别的概率,从而实现分类。
二、朴素贝叶斯分类器的公式
假设某个体有n项特征(Feature),分别为F1、F2、...、Fn。现有m个类别(Category),分别为C1、C2、...、Cm。贝叶斯分类器就是计算出概率最大的那个分类,也就是求下面这个算式的最大值:
P(C|F1F2...Fn)? = P(F1F2...Fn|C)P(C) / P(F1F2...Fn)
由于 P(F1F2...Fn) 对于所有的类别都是相同的,可以省略,问题就变成了求
P(F1F2...Fn|C)P(C)
的最大值。
朴素贝叶斯分类器则是更进一步,假设所有特征都彼此独立,因此
P(F1F2...Fn|C)P(C)? = P(F1|C)P(F2|C) ... P(Fn|C)P(C)
上式等号右边的每一项,都可以从统计资料中得到,由此就可以计算出每个类别对应的概率,从而找出最大概率的那个类。
虽然所有特征彼此独立这个假设,在现实中不太可能成立,但是它可以大大简化计算,而且有研究表明对分类结果的准确性影响不大。
下面再通过两个例子,来看如何使用朴素贝叶斯分类器。
三、账号分类的例子
本例摘自张洋的《算法杂货铺----分类算法之朴素贝叶斯分类》。
根据某社区网站的抽样统计,该站10000个账号中有89%为真实账号(设为C0),11%为虚假账号(设为C1)。
C0 = 0.89
C1 = 0.11
接下来,就要用统计资料判断一个账号的真实性。假定某一个账号有以下三个特征:
F1: 日志数量/注册天数? F2: 好友数量/注册天数? F3: 是否使用真实头像(真实头像为1,非真实头像为0)
F1 = 0.1? F2 = 0.2? F3 = 0
请问该账号是真实账号还是虚假账号?
方法是使用朴素贝叶斯分类器,计算下面这个计算式的值。
P(F1|C)P(F2|C)P(F3|C)P(C)
虽然上面这些值可以从统计资料得到,但是这里有一个问题:F1和F2是连续变量,不适宜按照某个特定值计算概率。
一个技巧是将连续值变为离散值,计算区间的概率。比如将F1分解成[0, 0.05]、(0.05, 0.2)、[0.2, +∞]三个区间,然后计算每个区间的概率。在我们这个例子中,F1等于0.1,落在第二个区间,所以计算的时候,就使用第二个区间的发生概率。
根据统计资料,可得:
P(F1|C0) = 0.5, P(F1|C1) = 0.1? P(F2|C0) = 0.7, P(F2|C1) = 0.2? P(F3|C0) = 0.2, P(F3|C1) = 0.9
因此,
P(F1|C0) P(F2|C0) P(F3|C0) P(C0)? = 0.5 x 0.7 x 0.2 x 0.89? = 0.0623
P(F1|C1) P(F2|C1) P(F3|C1) P(C1)? = 0.1 x 0.2 x 0.9 x 0.11
文档评论(0)