第三章平稳时间序列分析-3.ppt

  1. 1、本文档共41页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
三、ARMA模型 1、定义 具有如下结构的模型称为自回归移动平均模型,简记为ARMA(p,q) 特别当φ0=0 时,称为中心化ARMA(p,q)模型 系数多项式 引进延迟算子,中心化ARMA(p,q)模型可简记为 其中p阶自回归系数多项式: q阶移动平均系数多项式: 2、平稳条件与可逆条件 ARMA(p,q)模型的平稳条件 P阶自回归系数多项式Φ(B)=0的根都在单位圆外,即ARMA(p,q)模型的平稳性完全由其自回归部分的平稳性决定 ARMA(p,q)模型的可逆条件 q阶移动平均系数多项式θ(B)=0的根都在单位圆外,即ARMA(p,q)模型的可逆性完全由其移动平滑部分的可逆性决定 3、传递形式与逆转形式 传递形式 逆转形式 4、ARMA(p,q)模型的统计性质 均值 自协方差 自相关系数 自相关系数和偏自相关系数都具有拖尾性 【例3.7】考察ARMA模型的自相关性 ARMA(1,1): 直观地考察该模型自相关系数和偏自相关系数的性质。 显然,自相关系数和偏自相关系数拖尾 样本自相关图 样本偏自相关图 ARMA模型相关性特征: 3.3 平稳序列的建模 建模步骤 模型识别 参数估计 模型检验 模型优化 一、建模步骤 二、计算样本相关系数 样本自相关系数 样本偏自相关系数 三、模型识别 基本原则 模型定阶的困惑: 因样本的随机性,样本的相关系数不会呈现出完全截尾,本应截尾的自相关或偏自相关系数仍会呈现出小值振荡; 因平稳时间序列具有短期相关性,随着延迟阶数无穷大时,自相关或偏自相关系数都会衰减至0值附近作小值波动; 没有绝对的标准,主要靠经验。有时也利用一下由两种系数的近似分布推出的结论。 样本相关系数的近似分布 Barlett定理 Quenouille定理 模型定阶的经验方法 95%的置信区间(正态分布2?σ原则) 模型定阶的经验方法: 若样本(偏)自相关系数在最初d阶明显大于2倍标准差,后面几乎95%的值都落在2倍标准差范围内,且衰减为小值波动的过程很突然。这时常视为截尾,截尾阶数为d。 例2.5续 选择合适的ARMA模型拟合1950年—1998年北京市城乡居民定期储蓄比例序列。 序列自相关图 序列偏自相关图 【例3.8】 美国科罗拉多州某一加油站连续57天的OVERSHORT序列 序列自相关图 序列偏自相关图 【例3.9】 1880-1985全球气表平均温度改变值差分序列 序列自相关图 序列偏自相关图 四、参数估计 待估参数(也称模型口径) 非中心化的ARMA(p,q)可转化为 有p+q+2个未知参数 常用估计方法: 矩估计 极大似然估计 最小二乘估计 1、矩估计 原理 用相应阶样本自相关系数估计总体自相关系数 样本一阶均值估计总体均值 样本方差估计总体方差 【例3.10】求AR(2)模型系数的矩估计 AR(2)模型 Yule-Walker方程 矩估计(Yule-Walker方程的解) 【例3.11】求MA(1)模型系数的矩估计 MA(1)模型 由MA(1)协方差函数公式 矩估计 【例3.12】求ARMA(1,1)模型系数的矩估计 ARMA(1,1)模型 自相关系数与自协方差的关系方程 矩估计 矩估计的特点: 优点 估计思想简单直观 不需要假设总体分布 计算量小(低阶模型场合) 缺点 信息浪费严重 只依赖p+q个样本自相关系数信息,其他信息都被忽略 估计精度较差 通常矩估计方法被用作极大似然估计和最小二乘估计迭代计算的初始值 2、极大似然估计 原理 极大似然准则:抽取的样本出现概率最大。因此未知参数的极大似然估计就是使得似然函数(联合密度函数)达到最大的参数值 似然方程 由于 和 都不是 的显式表达式。因而似然方程组实际上是由p+q+1个超越方程构成,通常需要经过复杂的迭代算法才能求出未知参数的极大似然估计值 极大似然估计的特点 优点 极大似然估计充分应用了每一个观察值所提供的信息,因而它的估计精度高 同时还具有估计的一致性、渐近正态性和渐近有效性等许多优良的统计性质 缺点 需要已知总体分布 实际中,为便于计算,很多时候看作服从多元正态分布 3、最小二乘估计 原理 使残差平方和达到最小的那组参数值即为最小二乘估计值 条件最小二乘估计 假设条件:过去未观测到的序列值为0,即 残差平方和方程 用迭代法,求得使其达最小的参数值。 最小二乘估计的特点 最小二乘估计充分应用了每一个观察值所提供的信息,因而它的估计精度高; 不需总体分布,便于实现,所以条件最小二乘估计方法使用率最高。 例2.5续 确定1950年—1998年北京市城乡居民定期储蓄比例序列拟合模型的口径 拟合模型:AR(1) 估计方法:

文档评论(0)

junjun37473 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档