图像匹配与识别.ppt

  1. 1、本文档共53页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
* * 11.3 统计模式识别 统计模式识别主要是根据模式统计特性,采用一系列自动处理技术对给定模式进行大量统计分析,抓取反映模式本质的特征而进行赋值和分类识别处理。 统计识别认为图像可能包含有一个或若干个不同的物体,对于每一个物体都应当属于若干事先定义的模式类之一。 * * 统计模式识别的过程 统计模式识别方法最终都要归结为分类的问题。如果从某个模式中共抽取N个模式符图像,可以分为m个模式类,那么就可以对N进行分类,进而决定出未知图像属于这m个模式类中的哪一种。对模式的分类主要建立在统计决策理论之上的,而决策理论方法又要用到决策函数。通常可以把识别模式当作是对一个n维模式矢量进行分类,即: 其中xi为描述模式表达方式的第i个描述符。 * * 上式代表了一个n维模式矢量,对于给定的m个模式类ω1,ω2,ω3,…,ωm,识别过程就是要确定此n维模式矢量是否属于模式类ωi,以及模式矢量中的每一个x可以划归到哪一个ωi模式类。该问题也可以转化为对决策函数d1(x),d2(x),…,dm(x)的确定,如果模式x属于模式类ωi,就有 di(x)dj(x),j=1,2,…,m,i≠ j 从另一个角度考虑:如果将未知模式代入所有的决策函数,得到第i个决策函数的计算结果最大,那么就可以将这个未知模式划归到第i个模式类。 关键问题是找到合适的决策判别函数。这个过程叫学习或训练。 * * 实例:统计模式识别 19名男女同学进行体检,测量了身高和体重,但事后发现其中有4人忘记填写性别,试问(在最小错误的条件下)这4人是男是女?体检数值如下: * * 实例:统计模式识别 待识别的模式:性别(男或女) 测量的特征:身高和体重 训练样本:15名已知性别的样本特征 目标:希望借助于训练样本的特征建立判别函数(即数学模型) * * 实例:统计模式识别 由训练样本得到的特征空间分布图 * * 实例:统计模式识别 从图中训练样本的分布情况,找出男、女两类特征各自的聚类特点,从而求取一个判别函数(直线或曲线)。 只要给出待分类的模式特征的数值,看它在特征平面上落在判别函数的哪一侧,就可以判别是男还是女了。 * * 11.4 句法模式识别 所谓句法,是描述语法规则的一种法则。 一个完整的句子一定是主语+谓语或主语+谓语+宾语(或表语)的基本结构构成。一种特定的语言,一定类型的句子之间是有一定的结构顺序的。 特点: 无规则的任意组合,必然达不到正确的思想交流。 形容词、副词、冠词等可以与名词、动词构成“短语”,丰富句子要表达的思想内容。 而这些短语的构成也是有特定规律的。 * * 句子的层状结构 * * 自然句法规则的思想可以移植到图像的模式识别中。尽管自然界的景物组合是千变万化的,但仔细分析可以看出:某一对象的结构,也存在一些不变的规则。 一座房子由内屋顶和墙面构成。组成屋顶的几何图形,可以是三角形、四边形、圆形等,组成墙平面的几何图形也是由矩形、平行四边形(透视效果)等构成,至少某一个墙面应该有门,而窗的高度不低于门等等。进一步,还可以提出一些用来刻画构成一所房子的规则,如屋顶一定在墙面之上,且由墙面支撑。一所房子这些规则就像构成一个句子的句法规则一样,是不能改变的。 * * 如果将描述房子的规则(它构成一个房子的模式)存于计算机,要在一张风景照片上去识别有无房子,那么就可按照片上所有景物的外形匹配是否符合房子的模式(房子构成规则)。符合房子模式的就输出为“有房子”,否则,输出“无房子”。 句法模式识别是将一个复杂的模式分解成一系列更简单的模式(子模式),对子模式继续分解,最后分解成最简单的子模式(或称基元),借助于一种形式语言对模式的结构进行描述,从而识别图像。 模式、子模式、基元类似于英文句子的短语、单词、字母,这种识别方法类似语言的句法结构分析。因此称为句法模式识别。 * * 句法模式识别系统框图 * * 实例:句法模式识别 问题:如何利用对图像的结构信息描述,识别如下所示图片: * * 实例:句法模式识别 将整个场景图像结构分解成一些比较简单的子图像的组合; 子图像又用一些更为简单的基本图像单元来表示,直至子图像达到了我们认为的最简单的图像单元(基元); 所有这些基元按一定的结构关系来表示,利用多级树结构对其进行描述(这种描述可以采用形式语言理论)。 * * 实例:句法模式识别 多级树描述结构 * * 实例:句法模式识别 训练过程: 用已知结构信息的图像作为训练样本,先识别出基元(比如场景图中的X、Y、Z等简单平面)和它们之间的连接关系(例如长方体E是由X、Y和Z三个面拼接而成),并用字母符号代表之; 然后用构造句子的文法来描述生成这幅场景的过程

文档评论(0)

junjun37473 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档