网站大量收购闲置独家精品文档,联系QQ:2885784924

高中数学选修1-2-1.1回归分析的基本思想及其初步应用.ppt

高中数学选修1-2-1.1回归分析的基本思想及其初步应用.ppt

  1. 1、本文档共26页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
高中数学选修1-2-1.1回归分析的基本思想及其初步应用要点

第一章 统计案例 什么是回归分析: “回归”一词是由英国生物学家F.Galton在研究人体身高的遗传问题时首先提 出的。 根据遗传学的观点,子辈的身高受父辈影响,以X记父辈身高,Y记子辈身高。 虽然子辈身高一般受父辈影响,但同样身高的父亲,其子身高并不一致,因此, X和Y之间存在一种相关关系。 一般而言,父辈身高者,其子辈身高也高,依此推论,祖祖辈辈遗传下来, 身高必然向两极分化,而事实上并非如此,显然有一种力量将身高拉向中心, 即子辈的身高有向中心回归的特点。“回归”一词即源于此。 虽然这种向中心回归的现象只是特定领域里的结论,并不具有普遍性,但从 它所描述的关于X为自变量,Y为不确定的因变量这种变量间的关系看,和我们 现在的回归含义是相同的。 不过,现代回归分析虽然沿用了“回归”一词,但内容已有很大变化,它是一 种应用于许多领域的广泛的分析研究方法,在经济理论研究和实证研究中也发 挥着重要作用。 问题1:正方形的面积y与正方形的边长x之间 的函数关系是 y = x2 确定性关系 问题2:某水田水稻产量y与施肥量x之间是否 -------有一个确定性的关系? 例如:在 7 块并排、形状大小相同的试验田上 进行施肥量对水稻产量影响的试验,得到如下所示的一组数据: 施化肥量x 15 20 25 30 35 40 45 水稻产量y 330 345 365 405 445 450 455 复习:变量之间的两种关系 自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系。 1、定义: 1):相关关系是一种不确定性关系; 注 对具有相关关系的两个变量进行统计分析的方法叫回归分析。 2): 例1 从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。 编号 1 2 3 4 5 6 7 8 身高/cm 165 165 157 170 175 165 155 170 体重/kg 48 57 50 54 64 61 43 59 求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为 172cm的女大学生的体重。 案例1:女大学生的身高与体重 解:1、选取身高为自变量x,体重为因变量y,作散点图: 2、由散点图知道身高和体重有比较好的 线性相关关系,因此可以用线性回归方程 刻画它们之间的关系。 3、从散点图还看到,样本点散布在某一条 直线的附近,而不是在一条直线上,所以 不能用一次函数y=bx+a描述它们关系。 我们可以用下面的线性回归模型来表示: y=bx+a+e,其中a和b为模型的未知参数, e称为随机误差。 思考P3 产生随机误差项e 的原因是什么? 思考 产生随机误差项e的原因是什么? 随机误差e的来源(可以推广到一般): 1、其它因素的影响:影响体重y 的因素不只是身高 x,可能还包括遗传基因、饮食习惯、生长环境等因素; 2、用线性回归模型近似真实模型所引起的误差; 3、身高 x 的观测误差。 函数模型与回归模型之间的差别 函数模型: 回归模型: 可以提供 选择模型的准则 根据最小二乘法估计 和 就是未知参数a和b的最好估计, 所以回归方程是 所以回归方程是 所以,对于身高为172cm的女大学生,由回归方程可以预报 其体重为 探究P4: 身高为172cm的女大学生的体重一定是60.316kg吗?如果不是,你能解析一下原因吗? 探究P4: 身高为172cm的女大学生的体重一定是60.316kg吗?如果不是,你能解析一下原因吗? 答:身高为172cm的女大学生的体重不一定是60.316kg,但一般可以认为她的体重在60.316kg左右。 60.136kg不是每个身高为172cm的女大学生的体重的预测值,而是所有身高为172cm的女大学生平均体重的预测值。 函数模型与回归模型之间的差别 函数模型: 回归模型: 线性回归模型y=bx+a+e增加了随机误差项e,因变量y的值由自变量x和随机误差项e共同确定,即自变量x只能解析部分y的变化。 在统计中,我们也把自变量x称为解释变量,因变量y称为预报变量。 对回归模型进行统计检验 假设随机误差对体重没有影响,也就是说,体重仅受身高的影响,那么散点图中所有的点将完全落在回归直线上。但是,在图中,数据点并没有完全落在回归直线上。这些点散布在回归直线附近,所以一定是随机误差把这些点从回归直线上“推”开了。 因此,数据点和它在回归直线上相应位置的差异

您可能关注的文档

文档评论(0)

dajuhyy + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档