- 1、本文档共8页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
1--线性规划1--入门课案
第一章 线性规划
1 线性规划
在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一个重要分-------数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。
自从1947年美国学者丹西格1.1 线性规划的实例与定义
例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。生产甲机床需用机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时数分别为机器10小时、机器8小时和机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大?
上述问题的数学模型:设该厂生产台甲机床和乙机床时总利润最大,则应满足
(目标函数) (1)
s.t.(约束条件) (2)
这里变量称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式是问题的约束条件,记为s.t.(即subject to)。上述即为一规划问题数学模型的三个要素(决策变量/ 目标函数/约束条件)。由于上面的目标函数及约束条件均为线性函数,故被称为线性规划问题。
总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。
线性规划的Matlab标准形式
线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。为了避免这种形式多样性带来的不便,Matlab中规定线性规划的标准形式为
其中和为维列向量,为维列向量,为矩阵。
例如线性规划
的Matlab标准型为
1.3 线性规划问题的解的概念
一般线性规划问题的标准型为
(3)
(4)
可行解 满足约束条件(4)的解,称为线性规划问题的可行解,而使目标函数(3)达到最小值的可行解叫最优解。
可行域 所有可行解构成的集合称为问题的可行域,记为。
1.4 线性规划的图解法
图解法简单直观,有助于了解线性规划问题求解的基本原理。我们先应用图解法来求解例1。如上图所示,阴影区域即为LP问题的可行域R。对于每一固定的值,使目标函数值等于的点构成的直线称为目标函数等位线(图中的虚线是当z=12时),当变动时,我们得到一族平行直线。让等位线沿目标函数值减小的方向移动,直到等位线与可行域有交点的最后位置,此时的交点(一个或多个)即为LP的最优解。
对于例1,显然等位线越趋于右上方,其上的点具有越大的目标函数值。不难看出,本例的最优解为,最优目标值。
从上面的图解过程可以看出并不难证明以下断言:
(1)可行域可能会出现多种情况。可能是空集也可能是非空集合,当非空时,它必定是若干个半平面(一条直线分平面为两个半平面)的交集(除非遇到空间维数的退化)。既可能是有界区域,也可能是无界区域。
(2)在非空时,线性规划既可以存在有限最优解,也可以不存在有限最优解(其目标函数值无界)。
(3)R非空且LP有有限最优解时,最优解可以唯一或有无穷多个。
(4)若线性规划存在有限最优解,则必可找到具有最优目标函数值的可行域的“顶点”。
上述论断可以推广到一般的线性规划问题,区别只在于空间的维数。
在一般的维空间中,满足一线性等式的点集被称为一个超平面,而满足一线性不等式(或)的点集被称为一个半空间(其中为一维行向量,为一实数)。有限个半空间的交集被称为多胞形,有界的多胞形又被称为多面体。易见,线性规划的可行域必为多胞形(为统一起见,空集也被视为多胞形)。
在一般维空间中,要直接得出多胞形“顶点”概念还有一些困难。二维空间中的顶点可以看成为边界直线的交点,但这一几何概念的推广在一般维空间中的几何意义并不十分直观。为此,我们将采用另一途径来定义它。
定义1 称维空间中的区域为一凸集,若及,有。(定义1 说明凸集中任意两点的连线必在此凸集中;)
定义2 设为维空间中的一个凸集,中的点被称为的一个极点,若不存在及,使得。(而定义2 说明,若是凸集的一个极点,则不能位于中任意两点的连线上。)
不难证明,多胞形必为凸集。同样也不难证明,二维空间中可行域的顶点均为的极点(也没有其它的极点)。
1.5 求解线性规划的Matlab解法
单纯形法是求解线性规划问题的最常用、最有效的算法之一。单纯形法是首先由George Dantzig(美国学者丹西格Matlab解法。
Matlab5.3中线性规划的标准型为
基本
文档评论(0)