网站大量收购闲置独家精品文档,联系QQ:2885784924

《商务智能》考试复习内容(含答案).docx

  1. 1、本文档共8页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
《商务智能》考试复习内容(含答案)课案

闭卷考试,时间120分钟,五种题型:选择题(10分)、判断题(10分)、名词解释题(30分)、简答题(30分)、论述题(20分)第1章商务智能基本知识(1)商务智能的概念、价值、驱动力。概念:商务智能是企业利用现代信息技术收集、管理和分析结构化和非结构化的商务数据和信息,创造和累计商务知识和见解,改善商务决策水平,采取有效的商务行动,完善各种商务流程,提升各方面商务绩效,增强综合竞争力的智慧和能力-王茁专著《三位一体的商务智能》.IBM商务智能解决方案远远不只是数据和技术的组合,BI帮助用户获得正确的数据,发现它的价值,并共享价值。价值:To support decision making at all levels of business management based on the facts and (scientific) predictions of current and future business situations that are obtained from intelligent analysis of historical business data.支持各级决策基于事实和商业管理的(科学)的预测当前和未来的业务情况下获得历史业务数据的智能分析。Business decisions made with BI support are more-Correct 恰当-Accurate 准确-Objective 客观-Timely 及时驱动力:在商务智能背后有一些商业驱动力,例如:增加收入,减少费用和更有效地竞争的需求。管理和模拟当前商业环境复杂性的需求。减少IT费用和利用已有公司业务信息的需求。(2)商务智能系统的功能、主要工具。功能:在商务智能背后有一些商业驱动力,例如:增加收入,减少费用和更有效地竞争的需求。管理和模拟当前商业环境复杂性的需求。减少IT费用和利用已有公司业务信息的需求。主要工具:第2章商务智能核心技术(1)商务智能系统的架构如何?(2)什么是数据仓库?数据仓库用来保存从多个数据库或其它信息源选取的数据, 并为上层应用提供统一用户接口,完成数据查询和分析。支持整个企业范围的主要业务来建立的,主要特点是,包含大量面向整个企业的综合信息及导出信息。数据仓库是作为DSS服务基础的分析型DB,用来存放大容量的只读数据,为制定决策提供所需要的信息。数据仓库是与操作型系统相分离的、基于标准企业模型集成的、带有时间属性的、面向主题及不可更新的数据集合。以1992年W H Inmon出版《Building the Data Warehouse》为标志,数据仓库发展速度很快。 W H Inmon被誉为数据仓库之父。W H Inmon对数据仓库所下的定义:数据仓库是面向主题的、集成的、稳定的、随时间变化的数据集合,用以支持管理决策的过程。(3)OLTP和OLAP的区别?事务型处理(OLTP):即操作型处理,是指对数据库的联机操作处理OLTP。事务型处理是用来协助企业对响应事件或事务的日常商务活动进行处理。它是事件驱动、面向应用的,通常是对一个或一组记录的增、删、改以及简单查询等(大量、简单、重复和例行性)。在事务型处理环境中,数据库要求能支持日常事务中的大量事务,用户对数据的存取操作频率高而每次操作处理的时间短。分析型处理(OPAP):用于管理人员的决策分析,例如DSS、 EIS和多维分析等。它帮助决策者分析数据以察看趋向、判断问题。分析型处理经常要访问大量的历史数据,支持复杂的查询。分析型处理过程中经常用到外部数据,这部分数据不是由事务型处理系统产生的,而是来自于其他外部数据源。(4)数据仓库的技术要求。复杂分析的高性能体现:涉及大量数据的聚集、综合等,在进行复杂查询时经常会使用多表的联接、累计、分类、排序等操作。对提取出来的数据进行集成:数据仓库中的数据是从多个应用领域中提取出来的,在不同的应用领域和不同的数据库系统中都有不同的结构和形式,所以如何对数据进行集成也是构建数据仓库的一个重要方面。对进行高层决策的最终用户的界面支持:提供各种分析应用工具。(5)数据仓库系统的组成。源数据:数据仓库中的数据来源于多个数据源,它不仅可以是企业内部的关系型数据库,还包括非传统数据,如文件、HTML文档等。数据仓库管理系统:元数据库及元数据管理部件:元数据库用来存储由定义部件生成的关于源数据、目标数据、提取规则、转换规则以及源数据与数据仓库之间的映射信息等。数据转换部件:该部件把数据从源数据中提取出来,依定义部件的规则将不同数据格式的源数据转换成数据仓库的数据格式并装载进数据仓库。数据集成部件:该部件根据定义部件的规则、统一各源数据的编码规则,并净化数据,根据元数据中定义的数据组织形式对数据进行汇总、聚合计算。数

文档评论(0)

jiayou10 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:8133070117000003

1亿VIP精品文档

相关文档