网站大量收购闲置独家精品文档,联系QQ:2885784924

半导体纳米材料的制备.doc

  1. 1、本文档共13页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
半导体纳米材料的制备课件

新型半导体纳米材料的制备 摘要: 简要论述了半导体纳米材料的特点,着重讨论了当前国内外主要的几种半导体纳米材料的制备工艺技术,包括溶胶一凝胶法、微乳液法、模板法、基于MBE和MOCVD的纳米材料制备法、激光烧蚀法和应变自组装法等,并分析了以上几种纳米材料制备技术的优缺点及其应用前景。 关键词: 纳米材料;溶胶一凝胶法;分子束外延;金属有机物化学气相淀积;激光烧蚀淀积:应变自组装法; Several Major Fabrication Technologies of Novel Semi conductor Nanometer Materials Abstract: The characteristics of semiconductor nanometer materials are introduced. Several major fabrication technologies of semiconductor nanometer materials are discussed,including sol-gel process,tiny-latex process,template process,based on MBE and MOCVD,laser-ablation and strain-induced self-organized process,their advantages and disadvantages and their prospects are analyzed. Key words: nanometer material;sol-gel process; MBE; MOCVD: laser ablation deposition; strain-induced self-organized process; 引言 相对于导体材料而言,半导体中的电子动能较低,有较长的德布罗意波长,对空间限域比较敏感。半导体材料空间中某一方向的尺寸限制与电子的德布罗意波长可比拟时,电子的运动被量子化地限制在离散的本征态,从而失去一个空间自由度或者说减少了一维,通常适用体材料的电子的粒子行为在此材料中不再适用。这种自然界不存在,通过能带工程人工制造的新型功能材料叫做半导体纳米材料。现已知道,半导体纳米粒子结构上的特点(原子畴尺寸小于100 nm,大比例原子处于晶界环境,各畴之间存在相互作用等)是导致半导体纳米材料具有特殊性质的根本原因。半导体纳米材料独特的质使其将在未来的各种功能器件中发挥重要作用,半导体纳米材料的制备是目前研究的热点之一。本文讨论了半导体纳米材料的性质,综述了几种化学法制备半导体纳米材料的原理和特点。 2 .半导体纳米粒子的基本性质 2.1 表面效应 表面效应是指纳米粒子的表面原子数与总原子数之比随粒子尺寸的减小而大幅度地增加(对于直径为10nm的粒子,表面原子所占百分数为20%;直径为1nm的粒子,表面原子所占百分数为100%),粒子的表面能和表面张力随之增加,材料的光、电、化学性质发生变化。表面原子的活性比晶格内的原子高,其构型也可能发生变化,因而表面状况也将对整个材料的性质产生显著影响。例如,吴晓春等人[1]制备了表面包覆有阴离子表面活性剂的SnO2纳米微粒,测定了裸露的和表面包覆有阴离子表面活性剂的SnO2纳米微粒的红外吸收光谱。表面包覆有阴离子表面活性剂的SnO2纳米微粒形成宽的背景吸收带,表现为光吸收边红移。裸露的SnO2表现为光吸收蓝移。前者表现出很强的光致发光,后者只有微弱的荧光。因此想要获得发光效率高的纳米材料,采用适当的方法合成表面完好的半导体材料很重要。 2.2 量子尺寸效应 当半导体材料从体相减小到某一临界尺寸(如与电子的德布罗意波长、电子的非弹性散射平均自由程和体相激子的玻尔半径相等) 以后,其中的电子、空穴和激子等载流子的运动将受到强量子封闭性的限制,同时导致其能量的增加,与此相应的电子结构也从体相的连续能带结构变成类似于分子的准分裂能级,使原来的能隙变宽,即光吸收谱向短波方向移动,这就是量子尺寸效应。当热能、电场能或磁场能比平均的能级间距还小时,超微颗粒就会呈现一系列与宏观物体截然不同的特性,客观表现为光谱线会向短波方向移动,催化活性变化。Xu Sh-ming等[2]测定其合成的半导体纳米线阵列的紫外可见吸收光谱表明,随着半导体纳米线直径减小,其吸收边相对于体相蓝移的幅度增加,显示了明显的量子尺寸效应。量子尺寸效应是未来微电子、光电子器件的基础,当微电子器件进一步微小化时,必须考虑量子效应。 2.3 介电限

文档评论(0)

jiayou10 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:8133070117000003

1亿VIP精品文档

相关文档