Kaldi语音识别Lecture3.pdf

  1. 1、本文档共48页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Kaldi语音识别Lecture3

Speech REcognition - a practical guide Lecture 3 Phonetic Context Dependency Steps covered in this lecture $ cd ~/kaldi-trunk/rm/s3/ $ $ # Get alignments from monophone system. $ steps/align_deltas.sh data/train data/lang exp/mono exp/mono_ali $ $ # train tri1 [first triphone pass] $ steps/train_deltas.sh data/train data/lang exp/mono_ali exp/tri1 $ Aligning data with monophone system Training triphone system Weakness of “monophone” model Phones “sound different” in different contexts. Most strongly affected by phones immediately before/after. Simplest model of context dependency is to build separate model per “triphone” context. For 38 phones, #models required is 38x38x38 Too many models to train! Traditional context- dependency tree Build a “decision tree” for each “monophone” This follows the “Clustering and Regression Tree” (CART) framework Involves a “greedy” (locally optimal) splitting algorithm. Ask questions like “Is the left phone a vowel?” Is the right phone the phone “sh”? Models (HMMs) would correspond to the leaves “m” Left=vowel? Yes No Yes No Right=fricative? Square boxes correspond to Hidden Markov Models Traditional tree-building Train a monophone system (or use previously built triphone system) to get time alignments for data. For each seen triphone, accumulate sufficient statistics to train a single Gaussian per HMM state Suff. stats for Gaussian are (count, sum, sum- squared). Total stats size (for 39-dim feats): But not all ! triphones seen (38x38x38

文档评论(0)

yan698698 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档