- 1、本文档共48页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Kaldi语音识别Lecture3
Speech REcognition
- a practical guide
Lecture 3
Phonetic
Context Dependency
Steps covered in this lecture
$ cd ~/kaldi-trunk/rm/s3/
$
$ # Get alignments from monophone system.
$ steps/align_deltas.sh data/train data/lang exp/mono exp/mono_ali
$
$ # train tri1 [first triphone pass]
$ steps/train_deltas.sh data/train data/lang exp/mono_ali exp/tri1
$
Aligning data with monophone system
Training triphone system
Weakness of
“monophone” model
Phones “sound different” in different contexts.
Most strongly affected by phones immediately
before/after.
Simplest model of context dependency is to
build separate model per “triphone” context.
For 38 phones, #models required is 38x38x38
Too many models to train!
Traditional context-
dependency tree
Build a “decision tree” for each “monophone”
This follows the “Clustering and Regression
Tree” (CART) framework
Involves a “greedy” (locally optimal) splitting
algorithm.
Ask questions like “Is the left phone a vowel?”
Is the right phone the phone “sh”?
Models (HMMs) would correspond to the leaves
“m”
Left=vowel?
Yes
No
Yes No
Right=fricative?
Square boxes correspond to Hidden Markov Models
Traditional tree-building
Train a monophone system (or use previously
built triphone system) to get time alignments
for data.
For each seen triphone, accumulate sufficient
statistics to train a single Gaussian per HMM
state
Suff. stats for Gaussian are (count, sum, sum-
squared).
Total stats size (for 39-dim feats): But not all !
triphones seen
(38x38x38
文档评论(0)