- 1、本文档共6页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
小波阈值降噪要点
一种基于小波阈值降噪方法的图像降噪效果研究
电子信息学院 赵华 2015201355
一、引言
数字图像处理(Digital?Image?Processing,DIP)是指用计算机辅助技术对图像信号进行处理的过程。数字图像处理最早出现于20世纪50年代,随着过去几十年来计算机、网络技术和通信的快速发展,为信号处理这个学科领域的发展奠定了基础,使得DIP技术成为信息技术中最重要的学科分支之一。在现实生活中,DIP应用十分广泛,医疗、艺术、军事、航天等图像处理影响着人类生活和工作的各个方面。
然而,在图像的采集、获取、编码和传输的过程中,都存在不同程度被各种噪声所“干扰”的现象。如果图像被干扰得比较严重,噪声会变成可见的颗粒形状,导致图像质量的严重下降。根据研究表明,当一张图像信噪比(SNR)低于14.2dB?时,图像分割的误检率就高于0.5%,而参数估计的误差高于0.6%。通过一些卓有成效的噪声处理技术后,尽可能地去除图像噪声,我们在从图像中获取信息时就更容易,有利于进一步的对图像进行如特征提取、信号检测和图像压缩等处理。小波变换处理应用于图像去噪外,在其他图像处理领域都有着十分广泛的应用。本文以小波变换作为分析工具处理图像噪声,研究数字图像的滤波去噪问题,以提高图像质量。
二、基本原理
1.小波基本原理
? 在数学上,小波定义为对给定函数局部化的新领域,小波可由一个定义在有限区域的函数((x(来构造,((x(称为母小波(mother?wavelet),或者叫做基本小波。一组小波基函数, {(a,b (x(},可以通过缩放和平移基本小波来生成:
其中,a为进行缩放的缩放参数,反映特定基函数的宽度,b为进行平移的平移参数,指定沿x轴平移的位置。当a=2j和b=ia的情况下,一维小波基函数序列定义为:
其中,i为平移参数,j为缩放因子,函数f(x)以小波((x(为基的连续小波变换定义为函数f(x)和(a,b(x(的内积:
与时域函数对应,在频域上则有:
可以看出,当|a|减小时,时域宽度减小,而频域宽度增大,而且(a, b(x(的窗口中心向|ω|增大方向移动。这说明连续小波的局部是变化的,在高频时分辨率高,在低频时分辨率低,这便是它优于经典傅里叶变换的地方。总体说来,小波变换具有更好的时频窗口特性。
2.?图像去噪综述
所谓噪声,就是指妨碍人的视觉或相关传感器对图像信息进行理解或分析的各种因素。通常噪声是不可预测的随机信号。由于噪声影响图像的输入、采集、处理以及输出的各个环节,尤其是图像输入、采集中的噪声必然影响图像处理全过程乃至最终结果,因此抑制噪声已成为图像处理中极其重要的一个步骤。
依据噪声对图像的影响,可将噪声分为加性噪声和乘性噪声两大类。由于乘性噪声可以通过变换当加性噪声来处理,因此我们一般重点研究加性噪声。设f(x,y)为理想图像,n(x,y)为噪声,实际输入图像为g(x,y),则加性噪声可表示为:
其中,n(x,y)和图像光强大小无关。
图像去噪的目的就是从所得到的降质图像以g(x,y)中尽可能地去除噪声n(x,y),从而还原理想图像f(x,y)。图像去噪就是为了尽量减少图像的均方误差,提高图像的信噪比,从而尽可能多地保留图像的特征信息。
我们知道,有用信号主要分布于图像的低频区域,噪声主要分布在图像的高频区域,但图像的细节信息也分布在高频区域。这样在去除高频区域噪声的同时,难免使图像的一些细节也变得模糊,这就是图像去噪的一个两难问题。因此如何构造一种既能降低图像噪声,又能保留图像细节特征的去噪方法成为图像去噪研究的一个重大课题。
3.?小波阈值去噪法
3.1小波变换去噪的过程
小波去噪是小波变换较为成功的一类应用,其去噪的基本思路可用框图3-1来概括,即带噪信号经过预处理,然后利用小波变换把信号分解到各尺度中,在每一尺度下把属于噪声的小波系数去掉,保留并增强属于信号的小波系数,最后再经过小波逆变换恢复检测信号。
图3-1 小波去噪框图
因此,利用小波变换在去除噪声时,可提取并保存对视觉起主要作用的边缘信息。而传统的傅立叶变换去噪方法在去除噪声和边沿保持上存在着矛盾,原因是傅立叶变换方法在时域不能局部化,难以检测到局域突变信号,在去除噪声的同时,也损失了图像边沿信息。由此可见,与傅立叶变换去噪方法相比,小波变换去噪方法具有明显的优越性。
3.2小波阈值去噪的基本方法
3.2.1阈值去噪原理
小波阈值去噪方法的基本思想是当wj,k小于某个临界阈值时,认为这时的小波系数主要是由噪声引起的,予以舍弃。当wj,k大于这个临界阈值时,认为这时的小波系数主要是由信号引起,那么就把这一部分的wj,k直接保留下来(硬阈值方法),或者按某一个固定量向零收缩(软阈值方法),然后用新的小波系数进行小波重构得到去噪后的信号。此方法可
您可能关注的文档
- 土石坝课程设计.docx
- 小儿推拿手法 及保健.ppt
- 小儿推拿手法操作.ppt
- 小儿每月灸身柱、天枢,可保无病.docx
- 土豆新吃法,让你从此爱上它.doc
- 小儿肺系疾病的中医药调治.ppt
- 土豆传入欧洲对人口和城市化率的影响.ppt
- 圣诞晚会主持稿(完整).doc
- 小儿推拿操作.ppt
- 圣诞手工折纸.ppt
- 3.5二力平衡精选(原卷版)-2024-2025学年八年级物理上册同步精品课堂.pdf
- 2024财务管理的工作总结范文(4篇) .pdf
- 2024黑龙江省招聘村居后备干部考试复习重点试题及答案 .pdf
- 6-1 气象灾害(教师版)-高一地理同步精品讲义(人教版2019必修第一册).pdf
- eod项目可行性研究报告(精选10篇) .pdf
- 5.2《构建人类命运共同体》教案 2高二思想政治部编版选择性必修1当代国 .pdf
- 207年银行初级职业资格考试《银行管理》模拟试题及答案(六) .pdf
- DOC-梅子林康定县藏香猪养殖及立体农牧业观光园区项目项目建议书.pdf
- 8.5.3平面与平面平行 (教学设计)-高中数学人教A版(2019)必修第二册.pdf
- 2025届上海市市北高级中学生物高二第二学期期末教学质量检测试题含解析.pdf
文档评论(0)