计算机视觉与图像处理论文.pptVIP

  1. 1、本文档共13页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
教师、职称:何金成 副教授 计算机视觉在农业工程中的应用 学院:机电工程学院 专业年级:2011级农业电气化与自动化 姓名:卢瑞辉 学号:1111264001 本论文主要讲述这几年计算机视觉在农业工程农产品的分级检测、作物营养的监测、病虫草害的防治等方面的一些典型应用,以及存在问题和未来的发展方向。 关键词:农业工程;分级检测;计算机视觉 主要内容 论文结构 第一部分 引言 第二部分 农产品的分级检测 第三部分 作物营养的监测 第四部分 病虫草害的防治 第五部分 存在的问题 第六部分 未来展望 0 引言 计算机视觉是使用计算机及相关设备对生物视觉的一种模拟。它是一门综合性很强的学科,涵盖了包括计算机科学和工程、应用数学和统计学、信号处理、物理学以及神经生理学和认知科学等众多领域的知识。其主要任务是通过对采集到的图片或视频进行处理以获得相应场景的三维信息,并存储于计算机中以供人们的研究应用。 近年来,计算机视觉的研究与应用已扩展到了空间探索、地球资源勘探、工业、农业、医学和军事等诸多领域,尤其在农业工程领域更为突出。随着计算机软硬件技术、图形图像处理技术等的迅猛发展,无论在农产品的分级检测、作物营养的监测、病虫草害的防治等方面,都有较为细致地研究[1]。我将就此介绍计算机视觉在农业工程领域中的一些必威体育精装版的典型应用,并讨论其存在的问题和未来的发展方[1]。 1 农产品的分级检测 利用计算机视觉技术,可以对产品进行无接触检测,并获得大量的图像参数信息。它具有标准统一、识别率高、效率高并且无损害等一系列优点,特别适合于动植物等农产品质量的检测与综合评定,为农产品的分级提供有利可靠的依据。 云南农业大学的宋兰霞,杨毅在“云南省农业科技创新工程项目”中以计算机视觉技术为基础,针对主观性强、准确率低、成本高的大理石花纹含量测定的传统方法,运用统计学中的最大方差法去除图像黑色背景,使用二值法对大理石花纹进行提取,并对其含量进行测定。其研究结果表明,计算机视觉技术对于实现胴体图像中大理石花纹区域的分割和大理石花纹含量的测定具有很高的准确性,为肉质自动分级打下良好的基础[2]。 淮阴工学院电子与电气工程学院的王亚琴在“江苏省高校自然科学研究项目”中提出了基于计算机视觉的鸭蛋重量智能检测方法,实现了计算机视觉称重。该方法首先要构造出鸭蛋图像的灰度梯度共生矩阵,以最大熵原理为依据求出最佳灰度和梯度分割阈值,从而实现二维阈值的分割。然后采用数学形态学方法对分割后的图像进行处理,去除蛋壳表面的伪目标,并统计出鸭蛋区域的像素点。最后利用多项式拟合方法求出鸭蛋重量与面积的关系式。其检测误差在正负2g以内波动,平均误差为负0.13353g,检测精度基本满足生产加工的需求[3]。 赵海波,周向红在“光电子应用安徽省工程技术研究中心资助项目”中设计出了催熟番茄识别硬件组成系统,其计算机视觉装置能够有效的获取番茄透射光颜色参数(R、G、B)的值,并将其转换成HIS值,采用多层前馈神经网络自动识别催熟番茄。该系统识别正确率高达91.7%,可有效的阻止用乙烯催熟的番茄进入瓜果市场危害食用者的身体健康[4]。 2 作物营养的监测 20世纪末期,计算机视觉技术开始应用于对作物营养状况的信息监测之中。不管是人为因素,还是自然因素的影响,作物在生长过程中常会出现缺素的状况,这对于作物的健康成长是极为不利的。传统的植物营养诊断方法主要有化学分析和人眼经验目测这两种。此两种方法既耗时费力,又容易受到实验环境或气候条件的影响,不适合于农业生产的实际。计算机视觉技术的应用实现了农作物营养信息的快速、准确地判断,从而可以及时精确地补充作物缺少的肥料[5]。这就大大减少了资源的浪费,提高了农业生产的效率。 湖南农业大学的陈诚,廖桂平等在“国家自然科学基金项目”中利用计算机视觉技术,获取了水稻叶片DGCI、Hv、I2、I3、(2G-R-B)/L*和 Hv*Diff的颜色指标,然后结合BP网络、多元回归模型以及遗传算法,建立了叶绿素相对含量(SPAD值)的预测模型,利用所建立的数学模型对叶绿素相对含量进行预测,相对误差率仅为3.355 7%[6]。 石河子大学的董鹏,危常州等在“农业部行业公益性专项”中通过棉花需氮量吸收模型、棉花吸氮量计算机视觉识别模型和土壤无机氮供应估算模型建立了Fer tiEXP软件系统。这是一款基于计算机视觉和土壤( Nmin)软件系统,可对棉花氮素营养进行诊断并推荐氮肥施肥方案[7]。从小区实验和大田示范结果我们可以看出,采用 Fer tiEXP软件推荐施肥,可以优化肥料在作物全生育期的分配比例

文档评论(0)

jdy261842 + 关注
实名认证
文档贡献者

分享好文档!

1亿VIP精品文档

相关文档