光催化材料---无机功能材料论文.doc

  1. 1、本文档共9页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
光催化材料---无机功能材料论文要点

纳米TiO2光催化材料的制备与应用 摘要:光催化技术可利用太阳能降解有机物,无二次污染,反应条件温和,具有“节能和“环保双重重要意义。光催化材料自诞生以来,在空气净化、杀菌、除臭、自清洁等方面有着非常重要的应用。本文主要从光催化材料的催化机理出发,介绍了TiO2光催化材料的制备方法和应用现状,并展望了光催化材料的发展前景。 关键词:光催化材料;催化机理;制备方法;应用;发展前景 Preparation and applications of nano TiO2 photocatalyst material Abstract: Photocatalytic technology is a promising way for its significance in energy-saving and environmental protection, which under relatively mild reaction condition can decomposes organic substances only by using solar energy without secondary pollution. From the birth of photocatalytic materials to now, its applications on air purification, sterilization, deodorization, selfcleaning are very important. This text mainly write from the catalytic mechanism of photocatalytic materials, introduces the preparation methods of TiO2 photocatalytic material and its applications, and discussed the prospect of the development of this material. Keywords: TiO2 photocatalytic material; catalytic mechanism; preparation methods; applications; development potential 1.引言 光催化材料是由CeO2(70%-90%)、ZrO2(30%-10%)组成,形成ZrO2稳定CeO2的均匀复合物,外观呈浅黄色,具有纳米层状结构,在 1000℃ 经4小时老化后,比表面仍较大,因此高温下也能保持较高的活性。它首次出现在1972年由Fujishima A.和Honda K.[1]在《Nature》上发表的一篇关于TiO2半导体光分解水产生H2和O2的报道。光催化材料的关键是高效光催化材料的制备与应用技术的开发,与其他半导体材料相比,纳米TiO2光催化材料的优点有:1)对紫外光的吸收率较高;2)具有优异的抗光腐蚀性和化学稳定性;3)禁带宽度大,氧化还原能力强,有较高的光催化活性;4)对很多有机污染物有较强的吸附作用;5)无毒。用于光催化的纳米TiO2有两种形式:一是通过搅拌将纳米TiO2粉体混入溶液中,呈悬浮状与被光解物充分混合,称为悬浮体系;二是将纳米TiO2固定于某一载体材料而成固定状。悬浮态反应器由于其比表面积大及受光照的效果好等原因,通常比固定状形式具有更好的处理效果。但悬浮体系存在着难以回收、容易中毒。当溶液中存在高价阳离子时,催化剂不易分散等缺点。所以目前国内外研究较多的是将纳米TiO2进行固定化负载。 2纳米TiO2光催化机理 半导体粒子的能带结构,一般由低能的价带和高能的导带构成,价带和导带之间存在禁带。半导体的禁带宽度(Eg)一般在3.0ev以下。当能量大于或等于能隙的光(hv≥Eg)照射到半导体时,半导体微粒吸收光,产生电子—空穴对。与金属不同,半导体粒子的能带间缺少连续区域,电子—空穴对一般有皮秒级的寿命,足以使光生电子和光生空穴对经由禁带向来自溶液或气相的吸附在半导体表面的物种转移电荷。空穴可以夺取半导体颗粒表面被吸附物质或溶剂中的电子,使原本不吸收光的物质被活化并被氧化,电子受体通过接受表面的电子而被还原。如果半导体保持完整,向吸附物种转移电荷是连续和放热的,则这样的过程就称为多相光催化。下面以氧化钛为例说明光催化反应的一般过程[2]。 氧化钛在水和空气体系中受到阳光尤其是紫外光照射时,能够自行分解出自由移动的带负电荷的电子(e-)和带正电荷的空穴(h+),形成电子—空穴对,光生电子处于较高的能态,带边电势可达0~1.0V(相对饱和甘汞电极),足以把氧还原为活泼的过氧化氢,或直接

文档评论(0)

dajuhyy + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档