统计基础知识第一讲.ppt

  1. 1、本文档共51页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
* Example #1 is for a 1 sided spec. In order to determine the Z value or the # of std. deviations between the mean and the spec limit I need to calculate Z by taking the (spec. - mean)/std. deviation. If I want the proportion defective or the # of calls that will take more than 7 min. to be answered I look up 0.97 (the Z value) on the normal table. If I want DPMO I multiply the probability of a defect or the proportion defective by 1,000,000 opportunities. The gray shaded area represents the proportion of defectives or calls w/greater than 7 min. response time. * Here I look under the Z column for 0.9 then I look across the top of the table for .07. The value in the cell is the probability or proportion defective. * For a 2 sided specification I have to do a little more work because I have the chance of having defects on both sides. Therefore I need to first calculate an upper and lower Z value. Use the table to find the proportion defective for both the upper and lower. Add the two together to find out the total proportion defective. Look up the total proportion defective on the Z table to determine the sigma score and/or I multiply the proportion defective by 1,000,000 to get DPMO. * Note: The first thing I should notice about this process is that the data is not centered. This average or mean value of my data is not the same as the center of the specification. In 6 Sigma we always center processes 1st and then work on reducing the variability. If this process were centered the Z score would improve to 0.47sigma from 0.37 sigma. Now I need to work on reducing the variability to improve my Z score. * 均值的计算方法 *    方差和标准差的计算方法       * 例:离散分布 掷两颗骰子,出现的点数之和Y的均值、方差和标准差: 例 * 1.常用的离散分布: 二项分布 泊松分布 超几何分布 7 常用的分布 2.常用的连续分布 正态分布 均匀分布 指数分布 对数正态分布 * 正态分布 一般,属于计量数据的特性值服从正态分布。 (1)正态分布的曲线 * 其中: -∞x∞ μ为正态均值,描述质量特性值分布的集中位置。 σ为正态方差,描述质量特性值x分布的分散程度。 记符号χ∽N(μ,σ2) 正态分布 (2)正

文档评论(0)

wuyoujun92 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档