多元统计解析方法.doc

  1. 1、本文档共13页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
多元统计分析概述 目 录 一、引言………………………………………………………… 3 二、多元统计分析方法的研究对象和主要内容……………3 1.多元统计分析方法的研究对象………………………… 3 2.多元统计分析方法的主要内容………………………… 3 三、各种多元统计分析方法 ………………………………… 3 1.回归分析………………………………………………… 3 2.判别分析 ……………………………………………… 6 3.聚类分析 ……………………………………………… 8 4.主成分分析……………………………………………… 10 5.因子分析 ……………………………………………… 10 6. 对应分析方法 ………………………………………… 11 7. 典型相关分析 ………………………………………… 11 四、多元统计分析方法的一般步骤…………………………… 12 五、多元统计分析方法在各个自然领域中的应用…………… 12 六、总结………………………………………………………… 13 参考文献………………………………………………………… 14 谢辞……………………………………………………………… 15 一、引言 统计分布是用来刻画随机变量特征及规律的重要手段,是进行统计分布的基础和提高。多元统计分析方法则是建立在多元统计分布基础上的一类处理多元统计数据方法的总称,是统计学中的具有丰富理论成果和众多应用方法的重要分支。在本文中,我们将对多元统计分析方法做一个大体的描述,并通过一部分实例来进一步了解多元统计分析方法的具体实现过程。 二、 多元统计分析方法的研究对象和主要内容 (一)多元统计分析方法的研究对象 由于大量实际问题都涉及到多个变量,这些变量又是随机变量,所以要讨论多个随机变量的统计规律性。多元统计分析就是讨论多个随机变量理论和统计方法的总称。其内容包括一元统计学中某些方法的直接推广,也包括多个随即便量特有的一些问题,多元统计分析是一类范围很广的理论和方法。 现实生活中,受多个随机变量共同作用和影响的现象大量存在。统计分析中,有两种方法可同时对多个随机变量的观测数据进行有效的分析和研究。一种方法是把多个随机变量分开分析,一次处理一个随机变量,分别进行研究。 但是,这样处理忽略了变量之间可能存在的相关性,因此,一般丢失的信息太多,分析的结果不能客观全面的反映整个问题,而且往往也不容易取得好的研究结论。另一种方法是同时对多个随机变量进行研究分析,此即多元统计方法。通过对多个随即便量观测数据的分析,来研究随机变量总的特征、规律以及随机变量之间的相互关系。所以,多元统计分析是研究多个随机变量之间相互依赖关系及内在统计规律的一门统计学科。 (二)多元统计分析方法的主要内容 近年来,随着统计理论研究的不断深入,多元统计分析方法的内容一直在丰富。其中,主要内容包括多元正态总体参数估计、假设检验和常用的多元统计方法。多元正态总体参数估计、假设检验是多元统计推断的核心和基础,而常用的多元统计分析方法则是具体应用。从形式上,常用多元统计分析方法可划分为两类: 一类属于单变量常用的统计方法在多元随机变量情况下的推广和应用,如多元回归分析,典型相关分析等; 另一类是对多元变量本身进行研究所形成的一些特殊方法。如主成分分析,因子分析,聚类分析,判别分析,对应分析等。 三、各种多元统计分析方法 具体来说,常用的多元统计分析方法主要包括:多元回归分析、聚类分析、判别分析、主成分分析、因子分析、对应分析、典型相关分析等。下面我们对各种多元统计分析方法就行分别描述, (一) 回归分析 回归分析是最灵活最常用的统计分析方法之一,它用于分析一个因变量与一个或多个自变量之间的关系。特别是用于:(1)定量的描述和解释相互关系;(2)估测或预测因变量的值。 回归分析方法是在众多的相关变量中,根据实际问题考察其中一个或多个变量与其余变量的依赖关系。如果只要考察一个变量与其余多个变量之间的相互依赖关系,我们称为多元回归问题。若要同时考察多个因变量与多个自变量之间的相互依赖关系,我们称为多因变量的多元回归问题。 多元回归分析是研究因变量Y与m个自变量的相关关系 ,而且总是假设因变量Y为随机变量,而为一般变量。 下面我们来看一下多元线性回归模型的建立。 假定因变量Y与线性相关。收集到的n组数据()(t=1,2,···n)满足以下回归模型: 记 C=, 则所建回归模型的矩阵形式为 或 并称它们为经典多元回归模型,其中Y是可观测的随机向量,是不可观测的随机向量,C是已知矩阵,是未知参数,并设nm,且rank(C)=m+1。 在经典回归分析中,我们讨论模型中参数和的估计和检验问题。近代回归分析中讨论变量筛选、估计的改进,以及对模型中的一

文档评论(0)

xuefei111 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档