网站大量收购闲置独家精品文档,联系QQ:2885784924

2.3.1变量之间的相关关系.ppt

  1. 1、本文档共41页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
2.3.1变量之间的相关关系剖析

1.如果所有的样本点都落在某一函数曲线上,变量之间具有函数关系 2.如果所有的样本点都落在某一函数曲线附近,变量之间就有相关关系 3.如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系    只有散点图中的点呈条状集中在某一直线周围的时候,才可以说两个变量之间具有线性关系,才有两个变量的正线性相关和负线性相关的概念,才可以用回归直线来描述两个变量之间的关系 根据有关数学原理分析,当 时,总体偏差 为最小,这样 就得到了回归方程,这种求回归方程的方法叫做最小二乘法. (其中,b是回归方程的斜率,a是截距) 以上公式的推导较复杂,故不作推导,但它的原理较为简单:即各点到该直线的距离的平方和最小,这一方法叫最小二乘法。(参看如书P88-P89) O 45 50 55 60 65 20 25 30 35 40 年龄 脂肪含量 5 10 15 20 25 30 35 40 归纳: 1.求样本数据的线性回归方程,可按下列步骤进行: 第一步,计算平均数 , 第二步,求和 , (列表) 第三步,计算 第四步,写出回归方程 2.回归方程被样本数据惟一确定,各样本点大致分布在回归直线附近.对同一个总体,不同的样本数据对应不同的回归直线,所以回归直线也具有随机性. 3.对于任意一组样本数据,利用上述公式都可以求得“回归方程”,如果这组数据不具有线性相关关系,即不存在回归直线,那么所得的“回归方程”是没有实际意义的.因此,对一组样本数据,应先作散点图,在具有线性相关关系的前提下再求回归方程. 0.577×65-0.448= 37.1 思考6:利用计算器或计算机可求得年龄和人体脂肪含量的样本数据的回归方程为 由此我们可以根据一个人的年龄预测其体内脂肪含量的百分比的回归值.若某人65岁,则其体内脂肪含量的百分比约为多少? 能不能说他体内脂肪含量一定是37.1%? 若某人65岁,可预测他体内脂肪含量在37.1%(0.577×65-0.448= 37.1%)附近的可能性比较大。但不能说他体内脂肪含量一定是37.1% 原因:线性回归方程中的截距和斜率都是通过样本估计的,存在随机误差,这种误差可以导致预测结果的偏差,即使截距斜率没有误差,也不可能百分百地保证对应于x,预报值 能等于实际值y 例2、(07广东)下表提供了某厂节油降耗技术发行后生产甲产品过程中记录的产量(吨)与相应的生产能耗y(吨标准煤)的几组对应数据. X 3 4 5 6 y 2.5 3 4 4.5 (1)请画出上表数据的散点图; (2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程y= ; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:3×2.5+4×3+5×4+6×4.5=66.5) 所求的回归方程为 (2)解: (3) 预测生产100吨甲产品的生产能耗比技改前降 低 (吨) 例2、有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,得到一个卖出的热饮杯数与当天气温的对比表: 1、画出散点图; 2、从散点图中发现气温与热饮销售杯数之间关系的一般规律; 3、求回归方程; 4、如果某天的气温是2摄氏度,预测这天卖出的热饮杯数。 1、散点图 2、从图3-1看到,各点散布在从左上角到由下角的区域里,因此,气温与热饮销售杯数之间成负相关,即气温越高,卖出去的热饮杯数越少。 3、从散点图可以看出,这些点大致分布在一条直线的附近,因此利用公式1求出回归方程的系数。Y= -2.352x+147.767 4、当x=2时,Y=143.063 因此,某天的气温为2摄氏度时,这天大约可以卖出143杯热饮。 * * * * * * * * * * * 基础知识框图表解 变量间关系 函数关系 相关关系 散点图 线性相关 线性回归方程 问题提出和探究 在中学校园里,有这样一种说法:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题.” 按照这种说法,似乎学生的物理成绩与数学成绩之间存在着某种关系,我们把数学成绩和物理成绩看成是两个变量,那么这两个变量之间的关系是函数关系吗? 上述两个变量之间的关系是一种非确定性关系,称之为相关关系。 一、变量之间的相关关系 不同点:函数关系是一种确定

文档评论(0)

jiayou10 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:8133070117000003

1亿VIP精品文档

相关文档