网站大量收购闲置独家精品文档,联系QQ:2885784924

本科论文英文翻译.pdf

  1. 1、本文档共5页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
本科论文英文翻译

Proceedings of the Eighth International Conference on Machine Learning and Cybernetics, Baoding, 12-15 July 2009 AN APPROACH FOR FACIAL EXPRESSION RECOGNITION BASED ON NEURAL NETWORK ENSEMBLE XUE-FEI BAI, WEN-JIAN WANG School of Computer and Information Technology, Shanxi University Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education Taiyuan, 030006, China E-MAIL: baixuefei@, wjwang@ Abstract: Pantic et al. [2] and Fasel et al. [3] provided in-depth This paper proposes a novel method for facial expression reviews of the research on automatic facial expression recognition based on neural network ensemble. The facial recognition from different aspects, and they systematically expression features are extracted firstly through summarized the classical technologies and methods of multi-expression eigenspace analysis, and then several neural pattern recognition and feature extraction used in FER in networks are trained each with an eigenspace of different recent years. Principal component analysis (PCA), also expressions respectively. At last their training results are aggregated as inputs of the ensemble classifier, which will known as Karhunen-Loeve expansion, is an efficient feature provide not only the final recognition results but also the extraction and representation technique widely used in the estimat

文档评论(0)

liwenhua11 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档