作业五文件-Homework5forAlgorithmsForBig.PDF

作业五文件-Homework5forAlgorithmsForBig.PDF

  1. 1、本文档共2页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
作业五文件-Homework5forAlgorithmsForBig.PDF

Homework 5 for “Algorithms For Big Data Analysis” Zaiwen Wen Beijing International Center for Mathematical Research Peking University May 4, 2017 1 Submission Requirement 1. Prepare a report including detailed answers to each question numerical results and their iterpretation 2. The programming language can be either matlab, Python or c/c++. 3. Pack all of your codes named as ”hw5-ID-name.zip” and send it to both me and TA: wendouble@ pkuopt@163.com hw5- - 4. 5. word word pdf 6. If you get significant help from others on one routine, write down the source of references at the beginning of this routine. 2 Variants of Stochastic Gradients Algorithms Consider problem (2.1) where and . 1 1. Write down and implement two of the following algorithms: Adadelta, AdagradDA, Adagrad, ProximalAda- grad, Ftrl, Momentum, adam, Momentum, CenteredRMSProp, nesterov, rmsprop, SAG, SAGA, SVRG References: chapter 8 in: / 2. You are encouraged to read the implementation in caffe, tensorflow as well as other packages. However, you should implement the codes by yourself. If you are going to test stochastic gradient methods in project 1, please choose different algorithms other than these in project 1. 3. Data sets: MNIST and Covertype. The set up is exactly the same as section 5 in the following paper, except that the -norm regularization term is replaced by -norm. Note

文档评论(0)

tangtianbao1 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档