Google云计算技术MapReduce国外课件.ppt

  1. 1、本文档共48页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
MapReduce Jobs run in Aug, 2004 * * * * * * * * * * * * MapReduce: Refinements Locality Optimization Leverage GFS to schedule a map task on a machine that contains a replica of the corresponding input data. Thousands of machines read input at local disk speed Without this, rack switches limit read rate MapReduce: Refinements Redundant Execution Slow workers are source of bottleneck, may delay completion time. Near end of phase, spawn backup tasks, one to finish first wins. Effectively utilizes computing power, reducing job completion time by a factor. MapReduce: Refinements Skipping Bad Records Map/Reduce functions sometimes fail for particular inputs. Fixing the Bug might not be possible : Third Party Libraries. On Error Worker sends signal to Master If multiple error on same record, skip record MapReduce: Refinements Miscellaneous Combiner Function at Mapper Sorting Guarantees within each reduce partition. Local execution for debugging/testing User-defined counters MapReduce: Walk through of One more Application MapReduce : PageRank PageRank models the behavior of a “random surfer”. C(t) is the out-degree of t, and (1-d) is a damping factor (random jump) The “random surfer” keeps clicking on successive links at random not taking content into consideration. Distributes its pages rank equally among all pages it links to. The dampening factor takes the surfer “getting bored” and typing arbitrary URL. Computing PageRank PageRank : Key Insights Effect at each iteration is local. i+1th iteration depends only on ith iteration At iteration i, PageRank for individual nodes can be computed independently PageRank using MapReduce Use Sparse matrix representation (M) Map each row of M to a list of PageRank “credit” to assign to out link neighbours. These prestige scores are reduced to a single PageRank value for a page by aggregating over them. PageRank using

文档评论(0)

wuyoujun92 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档