- 1、本文档共37页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
统计案例ppt课件
a. 比《数学3》中“回归”增加的内容 数学3——统计 画散点图 了解最小二乘法的思想 求回归直线方程 y=bx+a 用回归直线方程解决应用问题 选修1-2——统计案例 引入线性回归模型 y=bx+a+e 了解模型中随机误差项e产生的原因 了解相关指数 R2 和模型拟合的效果之间的关系 了解残差图的作用 利用线性回归模型解决一类非线性回归问题 正确理解分析方法与结果 相关关系的测度(相关系数取值及其意义) 离差平方和的分解 (三个平方和的意义) 总偏差平方和(SST) 反映因变量的 n 个观察值与其均值的总离差 回归平方和(SSR) 反映自变量 x 的变化对因变量 y 取值变化的影响,或者说,是由于 x 与 y 之间的线性关系引起的 y 的取值变化,也称为可解释的平方和 残差平方和(SSE) 反映除 x 以外的其他因素对 y 取值的影响,也称为不可解释的平方和或剩余平方和 样本决定系数 (判定系数 r2 ) 回归平方和占总离差平方和的比例 什么是回归分析?(内容) 从一组样本数据出发,确定变量之间的数学关系式 对这些关系式的可信程度进行各种统计检验,并从影响某一特定变量的诸多变量中找出哪些变量的影响显著,哪些不显著 利用所求的关系式,根据一个或几个变量的取值来预测或控制另一个特定变量的取值,并给出这种预测或控制的精确程度 回归分析与相关分析的区别 相关分析中,变量 x 变量 y 处于平等的地位;回归分析中,变量 y 称为因变量,处在被解释的地位,x 称为自变量,用于预测因变量的变化 相关分析中所涉及的变量 x 和 y 都是随机变量;回归分析中,因变量 y 是随机变量,自变量 x 可以是随机变量,也可以是非随机的确定变量 相关分析主要是描述两个变量之间线性关系的密切程度;回归分析不仅可以揭示变量 x 对变量 y 的影响大小,还可以由回归方程进行预测和控制 59 43 61 64 54 50 57 48 体重/kg 170 155 165 175 170 157 165 165 身高/cm 8 7 6 5 4 3 2 1 编号 那么,在这个总的效应(总偏差平方和)中,有多少来自于解析变量(身高)? 有多少来自于随机误差? 假设随机误差对体重没有影响,也就是说,体重仅受身高的影响,那么散点图 中所有的点将完全落在回归直线上。但是,在图中,数据点并没有完全落在回归 直线上。这些点散布在回归直线附近,所以一定是随机误差把这些点从回归直线上 “推”开了。 在例1中,残差平方和约为128.361。 因此,数据点和它在回归直线上相应位置的差异 是随机误差的效应, 称 为残差。 例如,编号为6的女大学生,计算随机误差的效应(残差)为: 对每名女大学生计算这个差异,然后分别将所得的值平方后加起来,用数学符号 称为残差平方和,它代表了随机误差的效应。 表示为: 由于解析变量和随机误差的总效应(总偏差平方和)为354,而随机误差的效应为 128.361,所以解析变量的效应为 解析变量和随机误差的总效应(总偏差平方和) =解析变量的效应(回归平方和)+随机误差的效应(残差平方和) 354-128.361=225.639 这个值称为回归平方和。 我们可以用相关指数R2来刻画回归的效果,其计算公式是 反映回归直线的拟合程度 取值范围在 [ 0 , 1 ] 之间 r2 ?1,说明回归方程拟合的越好;r2?0,说明回归方程拟合的越差 判定系数等于相关系数的平方,即r2=(r)2 我们可以用相关指数R2来刻画回归的效果,其计算公式是 显然,R2的值越大,说明残差平方和越小,也就是说模型拟合效果越好。 在线性回归模型中,R2表示解析变量对预报变量变化的贡献率。 R2越接近1,表示回归的效果越好(因为R2越接近1,表示解析变量和预报变量的 线性相关性越强)。 如果某组数据可能采取几种不同回归方程进行回归分析,则可以通过比较R2的值 来做出选择,即选取R2较大的模型作为这组数据的模型。 总的来说: 相关指数R2是度量模型拟合效果的一种指标。 在线性模型中,它代表自变量刻画预报变量的能力。 我们可以用相关指数R2来刻画回归的效果,其计算公式是 1 354 总计 0.36 128.361 残差变量 0.64 225.639 随机误差 比例 平方和 来源 表1-3 从表3-1中可以看出,解析变量对总效应约贡献了64%,即R2 0.64,可以叙述为 “身高解析了64%的体重变化”,而随机误差贡献了剩余的36%。 所以,身高对体重的效应比随机误差的效应大得多。
文档评论(0)