贝叶斯分类器.pptVIP

  1. 1、本文档共17页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
贝叶斯分类器ppt课件

贝叶斯分类器;目录; 设x∈Ω是一个类别未知的数据样本,cj为某个类别,若数据样本x属于一个特定的类别cj,那么分类问题就是决定P(cj|x),即在获得数据样本x时,确定x的最佳分类。所谓最佳分类,一种办法是把它定义为在给定数据集D中不同类别cj先验概率的条件下最可能分类。 变换后得到: 更精确地讲,贝叶斯法则基于假设的先验概率、给定假设下观察到不同数据的概率,提供了一种计算假设概率的方法。 ;一、贝叶斯定理;贝叶斯公式;贝叶斯公式; 我们现在计算: P(cMAP|x) = max P(cj|x) j∈(1,|C|) 则P(cMAP|x)称为最大后验概率。 然后我们就把x分到cMAP类中。 ;朴素贝叶斯分类一;朴素贝叶斯分类二;朴素贝叶斯分类三;三、举例说明;三、举例说明;第一步:统计个数;第二步:估计先验概率和条件概率;第三步:样例判别;四、贝叶斯分类器的相关应用;

文档评论(0)

118zhuanqian + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档