网站大量收购闲置独家精品文档,联系QQ:2885784924

01背包问题的多种解法.docVIP

  1. 1、本文档共14页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
问题描述 0/1背包问题: 现有n种物品,对1=i=n,已知第i种物品的重量为正整数Wi,价值为正整数Vi,背包能承受的最大载重量为正整数W,现要求找出这n种物品的一个子集,使得子集中物品的总重量不超过W且总价值尽量大。(注意:这里对每种物品或者全取或者一点都不取,不允许只取一部分) 算法分析 根据问题描述,可以将其转化为如下的约束条件和目标函数: 于是,问题就归结为寻找一个满足约束条件(1),并使目标函数式(2)达到最大的解向量。 首先说明一下0-1背包问题拥有最优解。 假设是所给的问题的一个最优解,则是下面问题的一个最优解:。如果不是的话,设是这个问题的一个最优解,则,且。因此,,这说明是所给的0-1背包问题比更优的解,从而与假设矛盾。 穷举法: 用穷举法解决0-1背包问题,需要考虑给定n个物品集合的所有子集,找出所有可能的子集(总重量不超过背包重量的子集),计算每个子集的总重量,然后在他们中找到价值最大的子集。由于程序过于简单,在这里就不再给出,用实例说明求解过程。下面给出了4个物品和一个容量为10的背包,下图就是用穷举法求解0-1背包问题的过程。 四个物品和一个容量为10的背包 序号 子集 总重量 总价值 序号 子集 总重量 总价值 1 空集 0 0 9 {2,3} 7 52 2 {1} 7 42 10 {2,4} 8 37 3 {2} 3 12 11 {3,4} 9 65 4 {3} 4 40 12 {1,2,3} 14 不可行 5 {4} 5 25 13 {1,2,4} 15 不可行 6 {1,2} 10 54 14 {1,3,4} 16 不可行 7 {1,3} 11 不可行 15 {2,3,4} 12 不可行 8 {1,4} 12 不可行 16 {1,2,3,4} 19 不可行 (b)用回溯法求解0-1背包问题的过程 递归法: 在利用递归法解决0-1背包问题时,我们可以先从第n个物品看起。每次的递归调用都会判断两种情况: 背包可以放下第n个物品,则x[n]=1,并继续递归调用物品重量为W-w[n],物品数目为n-1的递归函数,并返回此递归函数值与v[n]的和作为背包问题的最优解; 背包放不下第n个物品,则x[n]=0,并继续递归调用背包容量为W,物品数目为n-1的递归函数,并返回此递归函数值最为背包问题的最优解。 递归调用的终结条件是背包的容量为0或物品的数量为0.此时就得到了0-1背包问题的最优解。 用递归法解0-1背包问题可以归结为下函数: 第一个式子表示选择物品n后得到价值比不选择物品n情况下得到的价值小,所以最终还是不选择物品n;第二个式子刚好相反,选择物品n后的价值不小于不选择物品n情况下得到了价值,所以最终选择物品n。 在递归调用的过程中可以顺便求出所选择的物品。下面是标记物品被选情况的数组x[n]求解的具体函数表示: 在函数中,递归调用的主体函数为KnapSack,m表示背包的容量,n表示物品的数量,x[n]表示是否选择了第n个物品(1—选,0—不选)。每个物品的重量和价值信息分别存放在数组w[n]和v[n]中。具体的代码见《递归法》文件夹。 贪心法: 0-1背包问题与背包问题类似,所不同的是在选择物品装入背包时,可以选择一部分,而不一定要全部装入背包。这两类问题都具有最优子结构性质,相当相似。但是背包问题可以用贪心法求解,而0-1背包问题却不能用贪心法求解。贪心法之所以得不到最优解,是由于物品不允许分割,因此,无法保证最终能将背包装满,部分闲置的背包容量使背包单位重量的价值降低了。事实上,在考虑0-1背包问题时,应比较选择物品和不选择物品所导致的方案,然后做出最优解。由此导出了许多相互重叠的子问题,所以,0-1背包问题可以用动态规划法得到最优解。在这里就不再用贪心法解0-1背包问题了。 动态规划法分析: 0-1背包问题可以看作是寻找一个序列,对任一个变量 的判断是决定=1还是=0.在判断完之后,已经确定了,在判断时,会有两种情况: 背包容量不足以装入物品i,则=0,背包的价值不增加; 背包的容量可以装下物品i,则=1,背包的价值增加。 这两种情况下背包的总价值的最大者应该是对判断后的价值。令表示在前i个物品中能够装入容量为j的背包的物品的总价值,则可以得到如下的动态规划函数: 式(1)说明:把前面i个物品装入容量为0的背包和把0个物品装入容量为j的背包,得到的价值均为0.式(2)第一个式子说明:如果第i个物品的重量大于背包的容量,则装入第i个物品得到的最大价值和装入第i-1个物品得到的最大价值是相同的,即物品i不能装入背包中;第二个式子说明:如果第i个物品的重量小于背包的容量,则会有两种

文档评论(0)

185****7617 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档