北京大学统计学经典第二章——统计回顾和分析方法课件.pptVIP

北京大学统计学经典第二章——统计回顾和分析方法课件.ppt

  1. 1、本文档共77页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
假设检验 在假设检验中,一般要设立一个原假设;而设立该假设的动机主要是企图利用人们掌握的反映现实世界的数据来找出假设和现实的矛盾,从而否定这个假设。在多数统计教科书中(除了理论探讨之外)的假设检验都是以否定原假设为目标。 如果否定不了,那就说明证据不足,无法否定原假设。但这不能说明原假设正确。很多教科书在这个问题上不适当地用“接受原假设”的说法,犯了明显的低级逻辑错误。 假设检验的过程和逻辑 首先要提出一个原假设,比如某正态总体的均值等于5(m=5)。这种原假设也称为零假设(null hypothesis),记为H0。 与此同时必须提出对立假设,比如总体均值大于5(m5)。对立假设又称为备选假设或备择假设(alternative hypothesis)记为记为H1或Ha。 假设检验的过程和逻辑 根据零假设(不是备选假设!),我们可以得到该检验统计量的分布; 然后再看这个统计量的数据实现值(realization)属不属于小概率事件。也就是说把数据代入检验统计量,看其值是否落入零假设下的小概率范畴; 如果的确是小概率事件,那么我们就有可能拒绝零假设,否则我们说没有足够证据拒绝零假设。 假设检验的过程和逻辑 注意:零假设和备选假设在假设检验中并不对称。因检验统计量的分布是从零假设导出的,因此,如果发生矛盾,当然就对零假设不利了。 不发生矛盾也不说明备选假设有问题(因为和备选假设无关)。 假设检验的过程和逻辑 检验统计量在零假设下等于这个样本的数据实现值或更加极端值的概率称为p-值(p-value)。 显然得到很小p-值意味着小概率事件发生了。如果小概率事件发生,是相信零假设,还是相信数据呢? 当然是相信数据。于是就拒绝零假设。但小概率并不能说明不会发生,仅仅发生的概率很小罢了。 拒绝正确零假设的错误常被称为第一类错误(type I error)。 假设检验的过程和逻辑 有第一类错误,就有第二类错误;那是备选零假设正确时反而说零假设正确的错误,称为第二类错误(type II error)。 零假设和备选假设哪一个正确,这是确定性的,没有概率可言。 而可能犯错误的是人。涉及假设检验的犯错误的概率就是犯第一类错误的概率和犯第二类错误的概率。 负责的态度是无论做出什么决策,都应该给出犯错误的概率。 假设检验的过程和逻辑 到底p-值是多小才能够拒绝零假设呢?也就是说,需要有什么是小概率的标准。这要看具体应用的需要。但在一般的统计书和软件中,使用最多的标准是在零假设下(或零假设正确时)抽样所得的数据拒绝零假设的概率应小于0.05(也可能是0.01,0.005,0.001等等)。这种事先规定的概率称为显著性水平(significance level),用字母a来表示。当p-值小于或等于a时,就拒绝零假设。所以,a是所允许的犯第一类错误概率的最大值。当p-值小于或等于a时,我们说这个检验是显著的(significant)。 假设检验的过程和逻辑 归纳起来,假设检验的逻辑步骤为: 第一,写出零假设和备选假设; 第二,确定检验统计量; 第三,确定显著性水平a; 第四,根据数据计算检验统计量的实现值; 第五,根据这个实现值计算p-值; 第六,进行判断:如果p-值小于或等于a,就拒绝零假设,这时犯错误的概率最多为a;如果p-值大于a,就不拒绝零假设,因为证据不足。 假设检验的过程和逻辑 实际上,计算机软件仅仅给出p-值,而不给出a。这有很多方便之处。比如a=0.05,而假定我们得到的p-值等于0.001。这时我们如果如果采用p-值作为新的显著性水平,即a=0.001,于是可以说,我们拒绝零假设,显著性水平为0.001。拒绝零假设时犯错误的概率实际只是千分之一而不是百分之五。在这个意义上,p-值又称为观测的显著性水平(observed significant level)。在统计软件输出p-值的位置,有的用“p-value”,有的用significant的缩写“Sig”就是这个道理。 假设检验的过程和逻辑 展示结果的精确性(根据数据减少a的值)总是没有害处的。这好比一个身高180厘米的男生,可能愿意被认为高于或等于180厘米,而不愿意说他高于或等于155厘米,虽然这第二种说法数学上没有丝毫错误。 假设检验的过程和逻辑 关于“临界值”的注:作为概率的显著性水平a实际上相应于一个检验统计量取值范围的一个临界值(critical value),它定义为,统计量取该值或更极端的值的概率等于a。也就是说,“统计量的实现值比临界值更极端”等价于“p-值小于a”。使用临界值的概念进行的检验不计算p-值。只比较统计量的取值和临界值的大小。 使用临界值而不是p-值来判断拒绝与否是前计算机时代的产物。当时计算p-值不易,只有采用临界值的概念。但从

文档评论(0)

mwk365 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档