- 1、本文档共80页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
optimizatio-lindo北戴河概要
MATLAB优化工具箱能求解的优化模型 LINDO 公司软件产品简要介绍 LINDO和LINGO软件能求解的优化模型 LINDO/LINGO软件的求解过程 建模时需要注意的几个基本问题 需要掌握的几个重要方面 使用LINDO的一些注意事项 “”(或“”)号与“=”(或“=”)功能相同 变量与系数间可有空格(甚至回车), 但无运算符 变量名以字母开头,不能超过8个字符 变量名不区分大小写(包括LINDO中的关键字) 目标函数所在行是第一行,第二行起为约束条件 行号(行名)自动产生或人为定义。行名以“)”结束 行中注有“!”符号的后面部分为注释。如: ! It’s Comment. 在模型的任何地方都可以用“TITLE” 对模型命名(最多72个字符),如: TITLE This Model is only an Example 使用LINDO的一些注意事项 变量不能出现在一个约束条件的右端 表达式中不接受括号“( )”和逗号“,”等任何符号, 例: 400(X1+X2)需写为400X1+400X2 表达式应化简,如2X1+3X2- 4X1应写成 -2X1+3X2 缺省假定所有变量非负;可在模型的“END”语句后用“FREE name”将变量name的非负假定取消 可在 “END”后用“SUB” 或“SLB” 设定变量上下界 例如: “sub x1 10”的作用等价于“x1=10” 但用“SUB”和“SLB”表示的上下界约束不计入模型的约束,也不能给出其松紧判断和敏感性分析。 14. “END”后对0-1变量说明:INT n 或 INT name 15. “END”后对整数变量说明:GIN n 或 GIN name 二次规划(QP)问题 LINDO可求解二次规划(QP)问题,但输入方式较复杂,因为在LINDO中不许出现非线性表达式 需要为每一个实际约束增加一个对偶变量(LAGRANGE乘子),在实际约束前增加有关变量的一阶最优条件,转化为互补问题 “END”后面使用QCP命令指明实际约束开始的行号,然后才能求解 建议总是用LINGO解QP [注意]对QP和IP: 敏感性分析意义不大 状态窗口(LINDO Solver Status) 当前状态:已达最优解 迭代次数:18次 约束不满足的“量”(不是“约束个数”):0 当前的目标值:94 最好的整数解:94 整数规划的界:93.5 分枝数:1 所用时间:0.00秒(太快了,还不到0.005秒) 刷新本界面的间隔:1(秒) 选项设置 Report/Statistics LINDO行命令、命令脚本文件 LINGO模型 — 例:选址问题 选址问题:NLP 边界 状态窗口 平面示意图 模型假设 卡车在一个班次中不应发生等待或熄火后再启动的情况; 在铲位或卸点处由两条路线以上造成的冲突问题面前,我们认为只要平均时间能完成任务,就认为不冲突。我们不排时地进行讨论; 空载与重载的速度都是28km/h,耗油相差很大; 卡车可提前退出系统,等等。 符号 xij :从i铲位到j号卸点的石料运量 (车) 单位: 吨; cij :从i号铲位到j号卸点的距离 公里; Tij :从i号铲位到号j卸点路线上运行一个周期平均时间 分; Aij :从号铲位到号卸点最多能同时运行的卡车数 辆; Bij :从号铲位到号卸点路线上一辆车最多可运行的次数 次; pi:i号铲位的矿石铁含量 p=(30,28,29,32,31,33,32,31,33,31) % qj : j号卸点任务需求,q=(1.2,1.3,1.3,1.9,1.3)*10000 吨 cki :i号铲位的铁矿石储量 万吨 cyi :i号铲位的岩石储量 万吨 fi :描述第i号铲位是否使用的0-1变量,取1为使用;0为关闭。 优化模型 计算结果(LINGO软件) 计算结果(派车) 最大化产量 CUMCM其他优化赛题 主要参考文献 飞机精确定位模型 第2类模型: 考虑误差因素(作为硬约束) Min x; Min y; Max x; Max y. 以距离为约束,优化角度误差之和(或平方和); 或以角度为约束,优化距离误差. 非线性规划 ? ? 仅部分考虑误差! 角度与距离的“地位”不应不同! 有人也可能会采用其他
文档评论(0)