- 1、本文档共31页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Presentation_of_ListMLE_读书会第8期ppt课件
* * * From 1898 to 1978 to 2008 Browse is impossible Search engine – essential tool 信息按一定的方式组织起来,并根据信息用户的需要找出有关的信息的过程和技术。狭义的信息检索就是信息检索过程的后半部分,即从信息集合中找出所需要的信息的过程,也就是我们常说的信息查寻 * 查询和匹配的语境和要求不同: 信息检索类: 特征描述丰富, 相对排序准确,top-k准确性; 协作过滤: 特征描述不丰富,绝对排序或等级; 序回归: 特征描述丰富,绝对排序,介于分类和回归之间; * * * * * * 机器学习: 目标函数+求解算法 * * * More: surrogate loss can be top-1 subgroup order sensitive to meet the consistency condition. * * * * As for the likelihood loss, the situation becomes much better. When the green point moves from the lower right to the upper left of the space, the likelihood loss decreases monotonously, and the minimum loss is achieved at the infinity of the upper left part of the space. This is clearly more reasonable than the aforementioned two losses. So overall speaking, by jointly considering all the properties, the likelihood loss is better than the cosine and the cross entropy loss. This partially explains why ListMLE outperforms other ranking algorithms. * * Learning to Rank – Theory and Algorithm @夏粉_百度 合办方:超级计算大脑研究部@自动化所 * We are Overwhelmed by Flood of Information * Information Explosion * 2013? * Ranking Plays Key Role in Many Applications * Numerous Applications Ranking Problem Information Retrieval Collaborative Filtering Ordinal Regression Example Applications * Overview of my Work before 2010 Machine Learning Theory and Principle Ranking Problems Information Retrieval Collaborative Filtering Ordinal Regression Theory Algorithm NIPS’09 PR’09 ICML’08 JCST’09 KAIS’08 IJICS’07 IJCNN’07 IEEE-IIB’06 * Outline Listwise Approach to Learning to Rank – Theory and Algorithm Related Work Our Work Future Work * Ranking ProblemExample = Document Retrieval Ranking Systems Documents query ranked list of documents * Learning to Rank for Information Retrieval * Ranking System Labels: 1) binary, 2) multiple-level, discrete, 3) pairwise preference, 4) Partial order or even total order of documents queries documents Training Data Test data Model Learning System min
文档评论(0)