- 1、本文档共112页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
客户关系管理——第九章——数据挖掘与客户关系管理要点
数据挖掘需要的人员 数据挖掘过程的分步实现,不同的步会需要是有不同专长的人员,他们大体可以分为三类。 业务分析人员:要求精通业务,能够解释业务对象,并根据各业务对象确定出用于数据定义和挖掘算法的业务需求。 数据分析人员:精通数据分析技术,并对统计学有较熟练的掌握,有能力把业务需求转化为数据挖掘的各步操作,并为每步操作选择合适的技术。 数据管理人员:精通数据管理技术,并从数据库或数据仓库中收集数据。 9.3 数据挖掘在CRM中的应用 从客户生命周期角度分析数据挖掘技术的应用 从行业角度分析数据挖掘技术的应用 从客户生命周期角度分析 在客户生命周期的过程中,各个不同的阶段包含了许多重要的事件。数据挖掘技术可以应用于客户生命周期的各个阶段提高企业客户关系管理能力,包括争取新的客户,让已有的客户创造更多的利润、保持住有价值的客户等等。 从客户各生命周期角度分析 潜在客户期市场活动及数据挖掘应用 潜在客户获得活动是针对目标市场的营销活动,寻找对企业产品或服务感兴趣的人。值得注意的是,在这个阶段缺乏客户数据。 数据挖掘可以把以前的客户对类似活动的响应进行挖掘,从而把市场活动重点锁定在以前的响应者身上。 一个更好的方法就是寻找和高价值的客户类似的潜在客户——只要一次就获得正确的客户。通常,获得活动使用广告和其它市场宣传媒体。无论何种渠道,数据挖掘在发现最重要的客户特定市场中发挥重要作用,决定着市场活动的类型、广告空间等一些宣传问题。 客户响应期市场活动及数据挖掘应用 潜在客户通过以下几种途径成为响应者:登陆企业网站;拨打免费电话;填写申请表等。 把潜在客户改变成为确定的客户、能够被锁定和跟踪的客户。虽然响应者还没有购买任何产品或服务,但他们有很大的可能性成为购买者,并成为企业客户。 数据挖掘通常被用来判定哪些潜在客户会变成响应者。预测模型也用来判定哪些响应者会成为企业即得客户。 即得客户市场活动及数据挖应用(1) 响应者购买企业产品的时候就变成了企业即得客户。这意味着他们已经进行了第一次的购买活动。在即得客户阶段包括许多活动。 最重要的活动可以划分为三:刺激使用(使用展现了客户行为,当使用是企业收入的主要来源,刺激使用就成为企业的重要目标。使用模式因不同的客户市场而有所不同);交叉销售(鼓励客户购买与第一次购买不同的产品或服务的市场营销活动); 升级销售(鼓励客户升级现有的产品和服务的市场营销活动)。 即得客户市场活动及应用(2) 即得客户是数据挖掘的重要区域。客户使用活动提供了客户行为模式的最本质的东西。预测什么时候会发生客户活动,判定哪个客户可能对交叉销售和升级销售活动做出响应对企业来讲是极具价值的。但既得客户的行为经常被大量详细的交易信息所淹没。使用数据挖掘要求从其中抽出其特点。客户早期的购买和使用模式是对企业来讲是非常具有价值的,在一些行业,首次行为预示了未来的使用信息。这些客户可以是高消费者或低消费者,他们可能对一个或多个产品感兴趣。这类行为通常在早期的购买行为中明显的表现出来。 客户流失期市场活动及数据挖掘应用 在一些情况下,客户停止购买企业产品。对此,有两种基本不同的流失原因,第一种是主动离开,指的是不再是客户的既得客户。了解主动离开出现的原因非常重要,以下是客户主动离开的一些基本原因:客户离开了企业服务的地区;客户的生活方式发生了变化,并不再需要企业的产品和服务;客户已经获得了竞争者提供的更好的产品或服务;客户不再认为使用企业产品有任何价值。 第二种是非主动离开,既被动离开。指的是即得客户不再是一个好的客户,通常因为他们停止支付他们的帐单。区别主动离开和被动离开对企业来说是非常重要的。数据挖掘可以通过分析以前的客户数据得出什么样的客户会在将来同样的离开。即使客户离开,也不是所有流失的客户就完全失去了。赢得客户活动的目标就是重新获得失去的客户。 从行业角度分析数据挖掘技术的应用 CRM中数据挖掘应用的深度和广度针对行业的不同而有所不同,特别是针对与客户交流频繁、客户支持要求高的行业,如银行、证券、保险、电信、税务、零售、旅游、航空、医疗保健等。 零售业CRM中数据挖掘的应用 电信业CRM中数据挖掘的应用 金融业CRM中数据挖掘的应用 零售业CRM中数据挖掘的应用 零售业CRM是数据挖掘的主要应用领域,特别是由于日益增长的Web或电子商务方式的兴起零售数据挖掘可有助于识别客户购买行为,发现客户购买模式和趋势,改进服务质量,取得更好的客户保持力和满意度,提高货品销量比率,设计更好的货品运输与分销策略,减少商业成本。例如:① 使用多特征数据立方体进行销售、客户、产品、时间和地区的多维分析;② 使用多维分析和关联分析进行促销活动的有效性分析;③ 序列模式挖掘可用于客户忠诚分析;④ 利用关联分析挖掘关联信息进行购买推
您可能关注的文档
- 实训教案4.2非单调轮廓复合加工.doc
- 实验-系统的频率特性.ppt
- 安全生产事故案例分析(2004-2013).doc
- 安全教育培训课件-中天.ppt
- 安全生产一岗双责培训.ppt
- 实验2属性数据的输入.doc
- 【世界区域地理】——西亚.ppt
- 实验2.1浏览器及电子邮件的使用.doc
- 安全生产事故调查与处理(电信).ppt
- 实验4.7数字示波器的使用.ppt
- 2023年江苏省镇江市润州区中考生物二模试卷+答案解析.pdf
- 2023年江苏省徐州市邳州市运河中学中考生物二模试卷+答案解析.pdf
- 2023年江苏省苏州市吴中区中考冲刺数学模拟预测卷+答案解析.pdf
- 2023年江苏省南通市崇川区田家炳中学中考数学四模试卷+答案解析.pdf
- 2023年江西省吉安市中考物理模拟试卷(一)+答案解析.pdf
- 2023年江苏省泰州市海陵区九年级(下)中考三模数学试卷+答案解析.pdf
- 2023年江苏省苏州市高新二中中考数学二模试卷+答案解析.pdf
- 2023年江苏省南通市九年级数学中考复习模拟卷+答案解析.pdf
- 2023年江苏省南通市海安市九年级数学模拟卷+答案解析.pdf
- 2023年江苏省泰州市靖江外国语学校中考数学一调试卷+答案解析.pdf
文档评论(0)