网站大量收购闲置独家精品文档,联系QQ:2885784924

在自然科学和工程设计中的许多问题.doc

在自然科学和工程设计中的许多问题.doc

  1. 1、本文档共36页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
在自然科学和工程设计中的许多问题,如电磁振荡、桥梁振动、机械振动等,常归结为求矩阵的特征值和特征向量.求矩阵的特征值和特征向量的问题是代数计算中的重要课题.本章着重介绍直接计算矩阵的特征值和特征向量的MATLAB程序、间接计算矩阵的特征值和特征向量的幂法、反幂法、雅可比方法、豪斯霍尔德方法和QR方法及其它们的MATLAB计算程序.最后我们还讨论广义特征值问题. 5.1 直接计算特征值和特征向量的MATLAB程序 5.1.4 计算特征值和特征向量的MATLAB程序 从以上的讨论可以看到,有许多问题归结为求矩阵的特征值和特征向量,而用手工计算高阶矩阵的特征值与特征向量的难度较大,但是,计算机软件MATLAB提供了直接计算特征值与特征向量的MATLAB函数 (见表5–1),下面介绍这些函数的使用方法. 表5–1 命 令 能 b = eig(A) 输入方阵A,运行后输出b为由方阵A的全部特征值构成的列向量 [V,D] = eig (A) 输入对称矩阵A,运行后输出D为由A的全部特征值构成的对角矩阵,V的各列为对应于特征值的特征向量构成的矩阵,使得AV = DV [V,D] = eig (A,nobalance) 输入方阵A,运行后输出D为由A的全部特征值构成的对角矩阵,V的各列为对应于特征值的特征向量构成的矩阵,使得AV = DV;如果A是对称矩阵,则输出的结果与程序 [V,D] = eig (A)的运行结果相同 5.2 幂法及其MATLAB程序 幂法是求实矩阵的主特征值(即实矩阵按模最大的特征值)及其对应的特征向量的一种迭代方法. 5.2.2 幂法的MATLAB程序 设阶实矩阵的个特征值为,且满足,的主特征值对应的特征向量为,则我们可以用下面的MATLAB程序计算和的近似值和近似向量. 用幂法计算矩阵的主特征值和对应的特征向量的MATLAB主程序 输入的量:阶实矩阵、维初始实向量V0、计算要求的精度jd、迭代的最大次数max1; 输出的量:迭代的次数k、的主特征值的近似值lambda、对应的特征向量的近似向量Vk、相邻两次迭代的误差Wc.如果迭代次数已经达到最大的迭代次数max1,则给出提示的相关信息. 根据迭代公式(5.20),现提供用幂法计算矩阵的主特征值和对应的特征向量的MATLAB主程序如下: function [k,lambda,Vk,Wc]=mifa(A,V0,jd,max1) lambda=0;k=1;Wc =1; ,jd=jd*0.1;state=1; V=V0; while((k=max1)(state==1)) Vk=A*V; [m j]=max(abs(Vk)); mk=m; tzw=abs(lambda-mk); Vk=(1/mk)*Vk; Txw=norm(V-Vk); Wc=max(Txw,tzw); V=Vk;lambda=mk;state=0; if(Wcjd) state=1; end k=k+1;Wc=Wc; end if(Wc=jd) disp(请注意:迭代次数k,主特征值的近似值lambda,主特征向量的近似向量Vk,相邻两次迭代的误差Wc如下:) else disp(请注意:迭代次数k已经达到最大迭代次数max1,主特征值的迭代值lambda,主特征向量的迭代向量Vk,相邻两次迭代的误差Wc如下:) end Vk=V;k=k-1;Wc; 例5.2.2 用幂法计算下列矩阵的主特征值和对应的特征向量的近似向量,精度.并把(1)和(2)输出的结果与例5.1.1中的结果进行比较. (1); (2);(3);(4). 解 (1)输入MATLAB程序 A=[1 -1;2 4];V0=[1,1];[k,lambda,Vk,Wc]=mifa(A,V0,0.00001,100), [V,D] = eig (A), Dzd=max(diag(D)), wuD= abs(Dzd- lambda), wuV=V(:,2)./Vk, 运行后屏幕显示结果 请注意:迭代次数k,主特征值的近似值lambda,主特征向量的近似向量Vk,相邻两次迭代的误差Wc如下: k = lambda = Wc = 33 3.00000173836804 8.691862856124999e-007 Vk = V = wuV = -0.49999942054432 -0.70710678118655 0.44721359549996 -0.89442822

文档评论(0)

185****7617 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档