网站大量收购闲置独家精品文档,联系QQ:2885784924

基于机器视觉的水果品质检测研究进展.docx

基于机器视觉的水果品质检测研究进展.docx

  1. 1、本文档共3页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
 PAGE \* MERGEFORMAT 3 基于机器视觉的水果品质检测研究进展 摘 要:水果品质检测关系到水果的包装运输贮藏和销售的效果和收益。传统的外观品质检测主要是利用分级机械,其存在很多不足之处,因此提出了利用机器视觉进行无损检测的技术。利用机器视觉技术主要是检测水果的大小、形状、颜色和表面缺陷四个性状参数。本文总结了国内外一些利用机器视觉技术对水果进行检测分级的成果,并以苹果外部品质检测与分级系统为例做了说明。然后就未来的发展前景做了展望。 关键词:水果品质检测, 机器视觉技术, 大小, 形状, 颜色, 表面缺陷 一、前言 水果品质检测是水果商品化处理的关键环节之一,直接关系到水果的包装运输贮藏和销售的效果和收益。品质检测主要包括外观品质和内部品质两个方面, 传统的外观品质检测主要是利用分级机械,根据水果的大小重量等指标进行分级,该方法主要是通过设计专用机械结构来检测水果的大小和重量,而无法对水果的颜色纹理和表面缺陷等做出评价,设备专用性强,利用率低,检测时水果常发生碰撞,容易导致水果的损伤。 近些年来发展起了利用机器视觉技术进行水果质量检测的技术。机器视觉技术从概念上讲是用计算机实现人的视觉功能也就是用计算机代替人眼实现对客观三维世界的认识。机器视觉是一门涉及到人工智能、神经生物学、心理物理学、计算机科学、图像处理学、模式识别等诸多领域的新兴交叉学科[1]。利用该技术可以实现高效率、无损害的水果品质检测。 二、国内外研究现状 在水果外观品质的检测中,主要是针对其大小、形状和颜色三个性状进行检测。按果实大小进行检测,选出大小基本一致的果实,有利于包装贮存和加工处理;而每种水果均具备相似的外形,通过制定形状等级,进行销售时可以提高水果的销售力;外表颜色是水果的最重要外观参数之一,消费者常常根据果品的颜色来决定是否购买。另外,果实表面缺陷也是水果品质检测的一个重要形状。针对上述几个方面的机器视觉检测法国内外研究人员已获得很多研究成果。 1、国外研究现状 Throop[2]等通过平移和旋转苹果来获取不同角度的图像,根据这些图像计算出苹果的赤道半径和面积;然后把苹果视为椭球体,计算出苹果的长轴和短轴,并据此估算苹果的大小。 Koc[3]研究了西瓜的体积测算算法,通过对采集到的图像进行处理,在不同的投影面上获取图像的轮廓线,形成轮廓切片,然后沿x轴旋转这些轮廓切片,通过把得到的切片组合起来测算出西瓜的体积。 Blasco等[4]分别使用了像素RGB平均值和对R/G设定简单阈值的方法来实时地区分四种不同石榴的品种,区分的成功率高于90%。 Tao[5]等研制出的基于计算机视觉的苹果缺陷检测系统,达到了快速和全面检测的效果。在该系统中,首先将采集到的6个苹果的图像数据进行分离和滤除环境噪声等处理,然后进行果面缺陷的计算。为了克服苹果曲面引起的光照强度不均的问题,通过缺陷变换,最大限度地保留了果面上任何水平的缺陷,包括灰度值低于背景的像素,然后通过形状变换算法,对光照进行有效的补偿。 2、国内研究现状 李翔[6]在基于视频图像的水果质量检测系统的研究中,通过求取水果图像总像素数的办法,获得水果大小;然后使用求取目标周长及面积的函数获取所需参数,以圆形度评价水果形状;通过掩模处理还原水果外围缺陷,再以Lab空间的色彩分割方法完成对水果缺陷特征的提取;最后再通过K均值聚类法实现对水果颜色分量的参数检测。 鲁伟奇等[7]在识别不同种类葡萄的无损检测方法研究中,在Matlab中直接对彩色图像进行目标提取,然后提取R、G、B三个分量的值,并分别求整体平均值得到彩色图片三分量的平均值r、g、b,通过特征变换使得不同图像上的r、g、b具备较大差异。再经过后期处理,所得结果准确率很高均方误差为0.000252%。 应义斌等[8]通过确定图像处理窗口,利用Sobel算子和Hilditch细化边缘,确定形心点找出代表果径,从而检测出黄花梨的外形尺寸与表现状况;另外对检测黄花梨表面缺陷,剔除利用红(R)、绿(G)色彩分量在坏损与非坏损交界处的突变,求出可疑点,再经区域增长定出整个受损面。 三、应用举例 袁金丽[9]在苹果外部品质检测与分级的应用研究里根据苹果形状、大小、颜 图 SEQ 图表 \* ARABIC 1 苹果外部品质检测与分级系统 色和表面缺陷这四个性状参数做了品质检测研究。所用的系统示意图如图1所示。 首先采集覆盖苹果整个表面的三幅图像,然后进行表面特征提取。接着分别对苹果的大小和形状、颜色及表面缺陷四个性状参数的快速检测进行了研究。 图 SEQ 图表 \* ARABIC 2 图像预处理流程 微分算子边缘检测 超快速中值滤波法平滑滤波处理 原图像 该研究使用了傅里叶算子描述苹果形状,并通过基于L-M算法的神经

您可能关注的文档

文档评论(0)

185****7617 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档