网站大量收购闲置独家精品文档,联系QQ:2885784924

数学建模DNA序列分类(2000年竞赛题).docVIP

  1. 1、本文档共24页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
DNA序列分类 摘要 本问题是一个“有人管理分类问题”。 首先分别列举出20个学习样本序列中1字符串、2字符串、3字符串出现的频率,构成含41个变量的基本特征集,接着用主成分分析法从中提取出4个特征。然后用Fisher线性判别法进行分类,得出了所求20个人工制造序列及182个自然序列的分类结果如下: 20个人工序列:22, 23,25,27,29,34,35,36,37为A类,其余为B类。 182个自然序列:1,4,8,10,27,29,32,41,43,48,54,63,70,72,75,76,81,86,90,92,102,110,116,119,126,131,144,150,157,159,160,161,162,163,164,165,166,169,170,182为B类,其余为A类。 最后通过检验证明所用的分类数学模型效率较高。 问 题 重 述 人类基因组计划中DNA全序列草图是由4个字符A,T,C,G按一定顺序排成的长约30亿的序列,其中没有“断句”也没有标点符号。虽然人类对它知之甚少,但也发现了其中的一些规律性和结构。例如,在全序列中有一些是用于编码蛋白质的序列片段,即由这4个字符组成的64种不同的3字符串,其中大多数用于编码构成蛋白质的20种氨基酸。又例如,在不用于编码蛋白质的序列片段中,A和T的含量特别多些,于是以某些碱基特别丰富作为特征去研究DNA序列的结构也取得了一些结果。此外,利用统计的方法还发现序列的某些片段之间具有相关性,等等。这些发现让人们相信,DNA序列中存在着局部的和全局性的结构,充分发掘序列的结构对理解DNA全序列是十分有意义的。目前在这项研究中最普通的思想是省略序列的某些细节,突出特征,然后将其表示成适当的数学对象。 作为研究DNA序列的结构的尝试,提出以下对序列集合进行分类的问题: 1)请从20个已知类别的人工制造的序列(其中序列标号1—10 为A类,11-20为B类)中提取特征,构造分类方法,并用这些已知类别的序列,衡量你的方法是否足够好。然后用你认为满意的方法,对另外20个未标明类别的人工序列(标号21—40)进行分类,把结果用序号(按从小到大的顺序)标明它们的类别(无法分类的不写入) 同样方法对182个自然DNA序列(它们都较长)进行分类,像1)一样地给出分类结果。 二.模型的合理假设 各序列中DNA碱基三联组(即3字符串)的起始位置和基因表达不影响分类的结果。 64种3字符串压缩为20组后不影响分类的结果。 较长的182个自然序列与已知类别的20个样本序列具有共同的特征。 三.模型建立与求解 研究DNA序列具有什么结构,其A,T,C,G4个碱基排成的看似随机的序列中隐藏着什么规律,是解读人类基因组计划中DNA全序列草图的基础,也是生物信息学(Bioinformaties)最重要的课题之一。 题目给出了20个已知为两个类别的人工制造的DNA序列,要求我们从中提取特征,构造分类方法,从而对20个未标明类别的人工DNA序列和182个自然DNA序列进行分类。这是模式识别中的“有人管理分类”问题,即事先规定了分类的标准和种类的数目,通过大批已知样本的信息处理找出规律,再用计算机预报未知。给出的已知类别的样本称为学习样本。对于此类问题,我们通过建立分类数学模型(这包括形成和提取特征以及制定分类决策)、考查分类模型的效率、预报未知这几个步骤来进行。 特征的形成和提取 为了有效地实现分类识别,首先要根据被识别的对象产生一组基本特征,并对基本特征进行变换,得到最能反映分类本质的特征。这就是特征形成和提取的过程。在列举了尽可能完备的特征参数集之后,就要借助于数学的方法,使特征参数的数目(在保证分类良好的前提下)减到最小。这是因为:1.多余的特征参数不但没有多少好处,而且会带来噪音,干扰分类和数学模型的建立。2.为了保证样本数和特征参数个数的比值足够大,而又不必要用太多的样本,最好使特征参数的个数降至最少。模式识别计算一般要求样本数至少为变量数的3倍,否则结果不够可靠。本问题的学习样本数为20个,故特征参数的个数以6—8个为宜。 我们通过研究4个字符A,T,C,G在DNA序列中的排列、组合特性,主要是研究字符和字符串的排列在序列中出现的频率,从中提取DNA序列的结构特征参数。 (一)特征的形成 分别列举一个字符,2个字符,3个字符的排列在序列中出现的频率,构成基本特征集。 1个字符的出现频率 表1列出了20个样本中A,T,C,G这4个字符出现的频率。由于在不用于编码蛋白质的序列片段中,A和T的含量特别多些,因此我们将A和T是否特别丰富作为一个特征。在表一中,列出了A和T出现的频率之和。(程序见附录一) 表 1

文档评论(0)

185****7617 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档